
 

 

 

 

 

This is the author’s version of a work that was accepted for publication: 

 

S. Alghowinem et al., "Multimodal Depression Detection: Fusion Analysis of 

Paralinguistic, Head Pose and Eye Gaze Behaviors," in IEEE Transactions on 

Affective Computing, vol.9, no.4, pp.1-1. doi: 10.1109/TAFFC.2016.2634527 

 

This file was downloaded from: 

https://researchprofiles.canberra.edu.au/en/publications/multimodal-

depression-detection-fusion-analysis-of-paralinguistic  

 

©2016 IEEE. Personal use of this material is permitted. Permission must be 

obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or 

reuse of any copyrighted component of this work in other works. 

 

Notice: This is the authors’ peer reviewed version of a work that was accepted 

for publication in the IEEE Transactions on Affective Computing which has 

been published at http://doi.org/10.1109/TAFFC.2016.2634527  

Changes resulting from the publishing process may not be reflected in this 

document 

 

  

 

 

https://researchprofiles.canberra.edu.au/en/publications/multimodal-depression-detection-fusion-analysis-of-paralinguistic
https://researchprofiles.canberra.edu.au/en/publications/multimodal-depression-detection-fusion-analysis-of-paralinguistic
http://doi.org/10.1109/TAFFC.2016.2634527


IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X, JANUARY 2015 1

Multimodal Depression Detection:
Fusion Analysis of Paralinguistic, Head Pose

and Eye Gaze Behaviors
Sharifa Alghowinem, Member, IEEE, Roland Goecke, Member, IEEE, Michael Wagner, Senior

Member, IEEE, Julien Epps, Member, IEEE, Matthew Hyett, Member, IEEE,
Gordon Parker, Member, IEEE, and Michael Breakspear, Member, IEEE

Abstract—An estimated 350 million people worldwide are affected by depression. Using affective sensing technology, our long-
term goal is to develop an objective multimodal system that augments clinical opinion during the diagnosis and monitoring
of clinical depression. This paper steps towards developing a classification system-oriented approach, where feature selection,
classification and fusion-based experiments are conducted to infer which types of behaviour (verbal and nonverbal) and behaviour
combinations can best discriminate between depression and non-depression. Using statistical features extracted from speaking
behaviour, eye activity, and head pose, we characterise the behaviour associated with major depression and examine the
performance of the classification of individual modalities and when fused. Using a real-world, clinically validated dataset of
30 severely depressed patients and 30 healthy control subjects, a Support Vector Machine is used for classification with several
feature selection techniques. Given the statistical nature of the extracted features, feature selection based on T-tests performed
better than other methods. Individual modality classification results were considerably higher than chance level (83% for speech,
73% for eye, and 63% for head). Fusing all modalities shows a remarkable improvement compared to unimodal systems, which
demonstrates the complementary nature of the modalities. Among the different fusion approaches used here, feature fusion
performed best with up to 88% average accuracy. We believe that is due to the compatible nature of the extracted statistical
features.

Index Terms—Depression detection, multimodal fusion, speaking behaviour, eye activity, head pose

F

1 INTRODUCTION

F LUCTUATIONS in mood are a normal part of most peo-
ple’s emotional lives, as long as such fluctuations are

not severe, frequent, or interfere with that individual’s daily
and social life functions. If they do, a psychiatric disorder
such as major depression disorder might be present. Major
depression is a mood disorder that may last for weeks,
months, even years, vary in severity, and is associated with
distress and disability that impair an individual’s ability
to function in daily life. The World Health Organisation
(WHO) lists depression as the fourth most significant cause
of disability worldwide and predicts it to be the leading
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cause in 2020 [1]. Moreover, in a recent report, the WHO
estimated that 350 million people worldwide are affected
by depression [1]. The suicide risk is more than 30 times
higher among depressed than in the general population [2].

Treatment of depression disorders is effective in many
cases [3], but misdiagnosing depressed patients is a com-
mon barrier [4]. Although clinical depression is one of
the most common mental disorders, it is often difficult to
diagnose, because it manifests itself in different ways and
because clinical opinion and self-assessment are currently
the only means of diagnosis, risking a range of subjective
biases. According to the WHO Global Burden of Disease
report, the barriers to effective diagnosis of depression in-
clude a lack of resources and trained health care providers.
Moreover, evaluations by clinicians vary depending on their
expertise and the diagnostic methods used (e.g. Diagnostic
and Statistical Manual of Mental Disorders (DSM-IV) [5]).
Depression has no dedicated laboratory tests and hence,
there is currently no objective method to diagnose de-
pression. We believe that recent developments in affective
sensing technology will potentially enable an objective
assessment. While automatic affective state recognition has
been an active research area in the past decade, methods
for mood disorder detection, such as depression, are still in
their infancy.

Our ultimate goal is to develop an objective multimodal
affective sensing system that supports clinicians during
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the diagnosis and monitoring of clinical depression. In
the long term, such a system may also become a very
useful tool for remote depression monitoring to be used
for doctor-patient communication in the context of e-health
infrastructure. Clinical assessment of patients with depres-
sion relies heavily on two domains – the clinical history
(i.e. history of presenting symptoms, prior episodes, family
history etc.) and the mental state examination (appearance,
speech, movement, reported mood etc., i.e. the assessment
of affect). The latter is the focus here. In particular, we
investigate the analysis of audio-visual data acquired dur-
ing a clinical interview with people meeting criteria for
depression for features that would generally be assessed
for the classic mental state examination. Nevertheless, this
is not to imply that this investigation of behavioral analysis
could replace the mental status examination, but rather to
supplement it.

The aims of this paper are:
• Investigating behavioural characteristics of depressed

subjects compared with matched controls using speech
style, eye activity and head pose modalities individu-
ally. This is done by exploring robust and quantitative
differences between the depressed group and control
group that are not prone to the subjective biases
outlined above. This investigation is performed to aid
in selecting the most promising behavioural features
for the multimodal classification.

• Exploring several data fusion techniques to capture
multimodal patterns of behavioural changes, following
the holistic (integrative) approach of the clinician.

This paper examines possibly the broadest array of
behavioural features to date and studies these empirically on
a clinically annotated matched control-depressed database
that is suitable for multimodal behavioural analysis. This
is significant because behaviour has long been closely
associated with depression-related symptoms, and offers
a promising non-invasive possibility for automatic depres-
sion assessment. These behavioural features are statistically
analysed for the feature selection step before the classifica-
tion. Moreover, this research’s long-term goal is to develop
an auotomated multimodal depression detection system in
a classification framework.

This paper is also the first to undertake a detailed
and comprehensive empirical study of methods for fus-
ing depression-related behavioural indicators (based on
statistical measures) from different sensor modalities for
depression detection. This is significant because depression
is a complex and multi-factor disorder and to date it appears
very likely that information from multiple modalities will
be essential in addressing automatic depression assessment.

2 BACKGROUND AND RELATED WORK

In the last two decades, affective sensing has been an
active research area, used in many contexts. One particular
application area in recent years has been in automated
depression analysis. It seems obvious that a multimodal

system that fuses different channels and cues is expected
to provide more accurate recognition than unimodal ap-
proaches. However, only few affective sensing systems use
multimodal input where different modalities are fused, such
as body movement, facial expression and speech prosody,
as reviewed in [6], [7]. Moreover, the AVEC depression
challenges have attracted much interest lately for assessing
systems to predict the depression severity [8]. Yet, relatively
few systems employed a multimodal approach as reviewed
below.

D’Mello and Kory [9] analysed some of these studies
by comparing the unimodal with multimodal results in the
affect detection domain. Regardless of the considerable
variation in terms of data, affect, modality, and method,
a consistent improvement was found for the multimodal
approach [9]. However, the fusion of different modalities
is not a trivial task. Several issues of when and how
to combine those modalities have to be considered. For
example, fusion could be performed as pre-matching (early)
fusion and post-matching (late) fusion.

Early fusion can be executed on raw data from each
sensor (sensor fusion) or on the extracted features from
raw data (feature fusion). Even though early fusion is
expected to contain richer information than late fusion
[10], it comes with complications and weaknesses. For
example, feature vectors from different modalities might
be unaligned, and incompatible. Such vectors could have
different time scales (i.e. different duration) or sampling
rates, for example, combining speech with video when there
are silence periods. Differences in dimensionalities or sizes
could be problematic in early fusion, such that combining
one-dimensional data (e.g. speech) with two-dimensional
data (e.g. video) could introduce a bias within the classifier
for one modality or another.

Several techniques for sensor fusion have been investi-
gated to overcome the above weaknesses and, therefore,
increase the robustness of the fusion results as reviewed in
[11]–[13]. These studies showed that measures of reliability
and/or confidence are required for robust sensor fusion
using computational theory.

Incompatibility issues have to be remedied before fusing
features using normalisation methods such as min-max,
Z-score, etc. Once normalised, features can be simply
concatenated or pre-processed for dimensionality reduc-
tion. Reducing dimensionality can be performed by feature
selection or feature transformation. Feature selection is a
statistical technique to find a relevant subset of features
from original features, for example, using statistical search
techniques to determine the most promising subset of
features. In general, feature selection methods can be di-
vided into three categories: filters, wrappers, and embedded
methods [14]. Wrappers and embedded approaches utilise
classification techniques to select the feature subset, which
can risk overfitting issues especially for small datasets.
On the other hand, filters select a subsets of features,
independently of any classification algorithms, using sta-
tistical measures such as ranking, correlation or simple
tests methods. Feature transformation creates new features
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using functions of the original features such as principal
component analysis (PCA) [15].

In this work, sensor fusion using raw data is not inves-
tigated, not only due to incompatibility in sampling rate,
segmentation, etc between audio and video channels, but
due to unsuitablilty for investigating behavioural charac-
teristics of depression. For example, silence segments in
the audio signal were eliminated, while the same segments
on video signal were used. For early fusion investigated
in this work, extracted features from the sensor data were
normalised before fusion.

Late fusion is executed after the classification of each
individual channel, using either the classifier output scores
(score fusion) or labels (decision fusion). Fusing scores
from different modalities that use the same type of classifier
is simple. However, fusing scores from different types
of classifiers can be complicated if the scores are not
compatible (i.e. distance from hyperplane vs. likelihood
ratio), therefore further normalisation before the fusion
should be performed [16]. Both score and decision fusion
could be executed in simple ways (e.g. sum-rule, product-
rule, etc., and logical AND, majority voting, etc.), or in
more complex ways such as using a secondary classifier
[16].

Hybrid fusion was recently introduced to utilise benefits
of both early and late fusion, i.e. fusing the scores or
decisions from both feature-concatenated and individual
modalities [17]. Hybrid fusion can be implemented by
having either one or two levels of score / decision fusion.
Either way, feature fusion of all modalities is performed
first to create a new modality, which is then treated as an
additional individual modality. The scores / decisions of this
new modality are then fused with the scores / decisions of
the individual modalities in either one or two levels (see
Figure 3 (d)).

To explore the most suitable fusion technique for
our multimodal depression classification investigation, this
work investigates both late and hybrid fusion methods using
several approaches. Noting that advanced approaches of late
and hybrid fusion that require separate sets for training,
testing and evaluation data could not be investigated due to
the relatively small dataset used here.

Many previous studies on automatic detection of depres-
sion have only investigated a single channel, either from
video or audio. To the best of our knowledge, only a
few studies have investigated multiple channels for this
task [18]–[23]. In [18], the relationship between facial
actions and vocal prosody for clinical depression detec-
tion was explored. However, the study did not investigate
fusion approaches for the examined channels. Scherer et
al. [19] investigated audio-visual indicators for automatic
depression detection, which were concatenated using fea-
ture fusion. The fused modalities outperformed individual
ones significantly, resulting in 90% accuracy (compared to
51% and 64% for acoustic and visual modalities alone,
respectively).

In [20], the GMM-UBM system for the audio subsystem
and Space Time Interest Points in a Bag-of-Words approach

for the vision subsystem were fused at feature level. Even
though the improvement in the fused system was not
statistically significant from the individual subsystems in
detecting the depression severity, other fusion approaches
were not investigated. Recently, Williamson et al. [21]
correlated several speech features along with facial action
unit features with the severity of depression in a multimodal
system using score fusion method, which achieved good
results to predict depression severity. Meng et al. [22] also
investigated fusing facial and vocal expressions for this
task, fused using a weighted sum decision fusion, and the
result improved slightly from individual channels.

In our previous work [23], several multimodal (audio-
video) fusion techniques using only low-level features
were compared at feature level, score level and decision
level for depression analysis. The low-level features were
clustered using Bag-of-Audio features for the audio channel
and Bag-of-Video features for Space Time Interest Points
for the video channel and then analysed individually and
combined for detecting depression, showing considerable
improvements in the fused system compared with individual
modalities.

As can be noticed, the multimodal investigation in the
previously mentioned depression detection studies is not
only limited in fusion approaches (e.g. feature fusion,
score fusion), but also for the number and type of ex-
plored modalities (i.e. speech and facial only). Therefore,
in this paper, to evaluate a multimodal approach for the
automatic detection of depression, we investigate several
fusion techniques for classifying depression characteristics
from speech behaviour, eye activities, and head pose and
compare the results with the unimodal results.

3 METHOD

3.1 Participants and Data Acquisition

Clinically validated data was collected for at the Black Dog
Institute1 – a clinical research facility offering specialist
expertise in depression and bipolar disorder – in Sydney,
Australia. The study used healthy controls and subjects
diagnosed with depression (either Melancholia or Major
Depression Disorder (MDD)). We acknowledge the risk
of treating Melancholia and MDD patients as one class
here, however, a further division is not practical for the
classification task, given the relatively modest sample size.

Depressed patients were recruited into the study from the
tertiary referral Depression Clinic at the Black Dog Insti-
tute. All patients were classified as having a current major
depressive episode on the Mini International Neuropsychi-
atric Interview (MINI [24]), conducted by trained research
assistants (RA), with the type of depression (variably
melancholic, non-melancholic and bipolar depression) rated
independently by clinical psychiatrists. Healthy control sub-
jects were recruited from the community. Exclusion criteria
for healthy controls included current and/or past depression,
(hypo)mania or psychosis as assessed by the MINI. Clinical

1. http://www.blackdoginstitute.org.au
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participants were excluded if they met criteria for current
and/or past psychosis (unrelated to mood). Additional ex-
clusion criteria, for all subjects, included current and/or
past alcohol dependence, neurological disorder or history of
significant brain injury, a Wechsler Test of Adult Reading
[25] score below 80 and/or electroconvulsive therapy in the
past six months. Depression severity was assessed using the
Quick Inventory of Depressive Symptomatology Self Re-
port (QIDS-SR [26]), with all clinical participants meeting
at least a moderate level of depression severity. Informed
consent was obtained from all participants and the study
proceeded with approval from the local institutional Human
Research Ethics committee in line with the guidelines for
human research from the National Health and Medical
Research Council.

The audio-video experimental paradigm contains several
parts, including an interview with a clinician, where specific
open ended questions were asked. Subjects were asked to
describe events in their life that had aroused significant
emotions. This item was designed to elicit spontaneous self-
directed speech and related facial expressions, as well as
overall body language. The content of affective situations
including neutral situations such as routine activities, posi-
tive social events, such as births and weddings, and negative
situations, such as bereavement or financial problems, were
explored, with a particular focus on perceived mechanisms
leading to depression. Open ended questioning was con-
ducted by one of two trained RAs, in a typical clinician-
patient interaction during an assessment. The RAs were not
blinded to the depression status of the subjects. Moreover,
some of the subjects had previous interaction with the RAs
(mostly from the control subjects subset).

Video and audio streams were captured in QuickTime
Pro (running on a 17” Apple Macbook Pro) using a
high-resolution Pike F-100 FireWire camera (Allied Vision
Tech.), and broadcast-quality (Sony) lapel microphone. The
camera was positioned on a tripod behind the monitor that
presented the stimuli, with the height of the camera adjusted
for each participant to ensure optimal recording of facial
features. The microphone was attached to the participant’s
lapel, at mid-chest level. During open ended questioning,
the RA stood camera-left, behind the monitor (to the right
of the participant). Audio was digitised at 44.1 kHz, and
the video frame rate was set at 30 fps (frame per second).
Both depressed and control subjects were recorded using
the same facility (same room setting, hardware equipment,
and software). All sessions were recorded at the Black
Dog Institute during office hours (8am-5pm). Moreover, the
recordings were collected over three years.

Matched-subject design is an important concept for
studies in psychology, that aims for equating groups on
some variables to reduce their effect on skewing the re-
sults. Generally, matched-subject design (also referred to
as between-subject design) is preferred as it is sensitive
to the effects of the independent variable, which increases
the statistical power. To the best of our knowledge, the
dataset used in this work is the only clinically annotated
matched control-depressed database that is being used for

TABLE 1
Total, average and standard deviation duration (in

minutes) of depressed and control subjects speech in
the interview part

Part Depressed Control Total
Duration of full interviews:

Total 309.2 199.8 509.0
Average 10.1 6.6 8.4
Standard deviation ± 5.5 ± 2.0 ± 4.4

Duration of subjects’ speech
Total 183.2 107.7 290.9
Average 6.1 3.6 4.8
Standard deviation ± 4.3 ± 1.5 ± 3.5

automated multimodal behavioural analysis. In this study,
the gender and age were matched in depressed and control
groups to reduce the variability of gender bias and the age
differences effect. In this study, a gender balanced subset of
30 depressed subjects (19 Melancholia patients, 10 MDD
patients, and 1 Bipolar patient) and 30 controls was used
(age range 21-75yr, µ38 ± 14). Only native Australian
English speaking participants were selected, to reduce the
variability arising from different language acquisition. For
depressed subjects, the level of depression was a selection
criterion, with a mean of 19 points of the diagnoses using
QIDS-SR (range 14-26 points, where 11-15 points refer to
a “Moderate” level, 16-20 points to a “Severe” level, and
≥ 21 points to a “Very Severe” level).

In this paper, only the interview part of the paradigm was
analysed, as it contains spontaneous interaction behaviour
for both audio and video channels. The total duration of the
recorded video-audio interviews is over 500 minutes (see
Table 1). In addition, the interviews were manually labelled
to extract pure subject speech 2, as well as reciprocal speech
to extract speech behaviour (see Section 3.2.1). The total
pure speech duration is 290 minutes (see Table 1).

3.2 Feature Extraction

To analyse behavioural patterns of subjects’ responses,
we extracted statistical features from speech behaviour,
eye activity, and head movement. As facial expressions to
diagnose depression have been investigated in the literature,
which mostly uses low-level features, and as the video
recording did not include the full body to analyse body
and hand movements, these modalities are not included
in this paper, but are acknowledged as potential further
relevant sources of information. Moreover, the focus here is
to extract behavioural patterns (using statistical measures)
of depressed subjects compared with healthy control sub-
jects. For all modalities, some of the extracted features
were selected based on the literature and the rest were
hypothesised to be potentially relevant but had not been
previously investigated for this task. Statistical analyses are
carried out to filter out the insignificant features.

2. where speech of other spreakers, overlapped speech, as well as
pauses, noise, laughs, etc. are segmented.
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RA: Research Assistant speech, SIL1: first silence lag, AKN: Acknowledgment, SIL2: second silence lag, SB: subject speech, BO: overlapped speech

Fig. 1. An example of manual labelling of interview speech: The response lags, as well as pure and overlapped
speech were labelled for feature extraction.

3.2.1 Speech Behaviour Features
Behaviourally based evaluations of depressed speech have
found several distinguishing speech patterns as indicators
of disease progression, severity or treatment efficacy [27]–
[29]. In our preliminary study [30], we found that the
response time and speech rate were longer in depressed
subjects, while the interaction involvement and articulation
rate were higher in control subjects. In previous work [30]–
[33], we intensively investigated vocal prosody features.
In this paper, we focus on speaking behaviour patterns
(speaking rate, pauses, and articulation rate) for the task
of detecting depression and also for its compatibility with
the statistical features extracted from other modalities as
described below.

The subject interviews were manually labelled to sep-
arate speakers (i.e. interviewer and interviewee) and to
separate the interview open-ended questions. Within each
question, reciprocal speech and turns were also labelled
(see Figure 1). In this work, the speech behaviour feature
extraction is divided into two parts: (1) extracting features
from the extensive manual labelling, and (2) extracting
speech rate features from subjects’ segments.

Manually labelled speaker turns were used to extract sev-
eral statistical measurements of the duration for analyses. A
total of 63 statistical features are extracted from the manual
labelling of the interview, grouped in 7 duration groups:

• subject’s speech,
• research assistant (RA) speech,
• time to first response, which is the duration of the

silence after asking a question until an acknowledge-
ment indicated by any sounds or words that are not
the actual answer for the question (e.g. “ahhh”,“hmm”,
“well”, etc.),

• total response time, which is the lag between asking
the question and the actual answer,

• subject laughing, which indicates a positive affective
response in a conversation,

• overlapping laugh, and
• overlapping speech, which measures the involvement

style in a conversation.
From each of the above duration feature groups, 9

statistical features are calculated, namely: the average,

maximum, minimum, range, variance, standard deviation,
total, duration rate (duration of the feature in question
÷ total duration of the interview), and count (number of
occurrences of the feature in question). This resulted in 7
× 9 features.

Speaking rate features were also extracted from subject
speech segments by applying voice activity detector (VAD)
using the Praat software. From the silent and sounding
parts, speech, speaking, and pauses duration are extracted as
listed in the following feature list. Moreover, to calculate
speech rate and articulation rate, the number of syllables
has to be calculated. We used a Praat script by [34], which
calculates the number of syllables in a sounding segments.
A further 19 speech style features are extracted as follows:

• Maximum, minimum, range, variance, and standard
deviation, for sounding and silent parts (2 × 5 fea-
tures),

• For sounding part:
– number of sounding,
– total speaking duration (excluding pauses),
– articulation rate (number of syllable ÷ total

speaking duration),
– average speaking duration (speaking duration ÷

number of syllable),
• For silent part:

– number of pauses,
– total silence duration,
– silence rate (number of pauses ÷ silence dura-

tion),
– average silence duration (silence duration ÷ num-

ber of pauses),
• Number of syllables.
When measuring the speech rate, pauses are included

in the duration time of the utterance, while the articulation
rate excludes pauses [35]. Worth noting is that, unlike some
other speech features (e.g. MFCCs), these are features that
are (explicitly or implicitly) observed by clinical practition-
ers.

3.2.2 Eye Activity Features
Depressed patients were found to differ from the healthy
comparison group in decreased direct eye contact with
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(a) Left-right (length of a ÷ length of b)

and up-down (θ = cos−1( a.b
|a|.|b| )) movement features

(b) Eyelid distance of open eye

(length of c ÷ length of d)

(c) Eyelid distance of closed eye

(length of c ÷ length of d)

Fig. 2. Extracting and normalising eye movement
features: After locating specific points of the eyes using
an AAM, horizontal and vertical iris movements are
extracted (a) and the eyelid distance is calculated as
illustrated in (b) & (c).

the interviewer, decreased eyebrow movement and elevated
blink rates [28], [36], [37]. In our previous work [38], we
found that the average distance between the eyelids while
open was significantly smaller and the average duration of
blinks significantly longer in depressed subjects.

To accurately detect eye activities such as blinking and
iris movements, the eyelids and iris need to be located
and tracked. For this purpose, we trained and built spe-
cial subject-specific 74-point eye active appearance models
(AAM). To train the eye model, an average of 45 images per
subject were manually selected having different eye status
(e.g. open, half open, closed eye) and head position varia-
tion, then annotated. The annotated images were then used
to build the eye model, using linear parameters to update
the model in an iterative framework as a discriminative
fitting method. For each eye, horizontal and vertical iris
movement, and eyelid movement were extracted as low-
level features per frame (30 fps) (see Figure 2). It is
worth noting that the right and left eyes are relative to the
camera’s view (for details, see [38]). Moreover, a total of
128 statistical features (“functionals”) were extracted:

• Maximum, minimum, mean, variance, and standard
deviation for all 18 low-level features mentioned ear-
lier (5 × 18 features)

• Maximum, minimum, and average of: duration of
looking left, right, up and down, as well as blink
duration for each eye (3 × 2 eyes × 5 features)

• Closed eye duration rate, and closed eye to open eye
duration rate for both eyes (2 eyes × 2 features)

• Blinking rate for both eyes (2 eyes × 1 feature)
• Gaze aversion rate for both eyes (rate of duration of

non-frontal gazing) (2 eyes × 1 feature)

3.2.3 Head Pose and Movement Features
Simple behaviours such as head movements could provide
useful cues about the mood, emotions, personality, or cog-
nitive processing as found in [39]–[42]. Previously [43], we
found slower and less frequent head movements, increased
eye contact avoidance and less social engagement with

the clinical examiner, likely to also show in other social
interactions.

To extract head pose and movement behaviour, the face
had to be detected and tracked before a 3 degrees of
freedom (DOF) head pose could be calculated (yaw, roll
and pitch). We trained and built a subject-specific face
active appearance model (AAM), where 30 images per
subject were selected for manual annotation, then used for
the face model. A 3D face model was projected onto our
2D face AAM to estimate the 3-DOF head pose (for more
details refer to [43]).

These 3-DOF pose features, as well as their velocity
and acceleration, were extracted to give a total of 9 low-
level features per frame. Over the duration of each subject’s
interview, a total of 185 statistical features were extracted:

• Maximum, minimum, range, mean, variance, and stan-
dard deviation for all 9 low-level features mentioned
earlier. (6× 9 features)

• Maximum, minimum, range and average duration of:
head direction left, right, up and down, tilting clock-
wise and anticlockwise. (4× 6 features)

• Head direction duration rate, and rate of different
head directions for non-frontal head direction for all
directions mentioned above. (2× 6)

• Change of head direction rate for all directions men-
tioned above. (1× 6 features)

• Total number of changes of head direction for yaw,
roll, pitch, and all directions. (1× 4 features)

• Maximum, minimum, range, mean, variance, duration,
and rate for slow, fast, steady, and continuous move-
ment of yaw, roll, pitch. (7× 3-DOF ×4 features )

• Average duration of head aversion (average duration
of non-frontal head direction) (1 feature)

The above eye and head duration features were detected
when the feature in question is higher or lower than the
average of the feature in question plus or minus the standard
deviation of that feature for each subject’s interview. For
example, blink is detected as follows:

Blink =

{
1 : x < µ− σ
0 : x > µ− σ

Where x is the normalised distance between the eyelids
(length of c divided by the length of d (see Figure 2)) and
µ and σ are its mean and standard deviation respectively.

3.3 Analysis and Evaluation
3.3.1 Classification
For classification results reported in this work, we used
SVM classifiers, which are discriminative methods that
learn boundaries between classes. SVM has been widely
used in emotion classification tasks [44], and often consid-
ered state-of-the-art, since it provides good generalisation
properties [45]. To increase the accuracy of the results of
SVMs, the cost and gamma parameters were optimised.
We used LibSVM [46] to this end, with a wide range grid
search for the best parameters with a radial basis function
(RBF) kernel. To optimise the cost and gamma parameters,
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double-cross validation was used. That is, for each training
turn in leave-one-out cross-validation, an inner 10-fold
cross-validation was used. The final selected parameters
are the ones that generalised to all training observations
with all turns of the leave-one-out cross-validation. In
other words, the common parameters that give the highest
training average recall of all training sets in the cross-
validation models were selected. This overall optimisation
was performed to overcome the overfitting to the training
sets, and therefore is able to generalise to the testing sets.
The use of the average recall in optimising the parameters
is to give a balance of recall measure for each class. That
is, parameter selection finds as similar as possible correct
classification results in both classes.

The classification was performed in a binary (i.e.
depressed/non-depressed) subject-independent scenario.
Given the relatively modest number of (depressed and
control) subjects, which is a common problem in similar
studies, a separate development set could not be used.
To mitigate this limitation, a leave-one-subject-out cross-
validation was used for classification, feature selection, and
fusion without any overlap between training and testing
data. Therefore, the results might be somewhat optimistic.

We measure the performance of the system in terms
of average recall (AR), to be consistent with the pa-
rameter optimisation procedure explained above. More-
over, AR considers the correct recognition in both groups
(depressed/non-depressed). The AR is also called “balanced
accuracy”, and is calculated as the mean of sensitivity and
specificity. Since the SVM parameters are optimised using
AR, the final classification results are balanced between the
two binary classes. Therefore, measures from the confusion
matrix (e.g. accuracy, F1 score) are approximately equal
(/pm0.001).

3.3.2 Statistical Analysis
In order to understand and characterise the behavioural
patterns, the extracted statistical functional features from
depressed and control groups were evaluated and com-
pared statistically for significance. As our analysis was
performed in a binary manner (depressed/non-depressed),
a two-sample two-tailed T-test was used for statistical
analysis purposes. The two-tailed T-tests assume unequal
variances with significance p = 0.05. The sign of the T-test
was also calculated to identify the direction of the effect.

Worth noting is that the threshold of p < 0.05 is uncor-
rected for the multiple comparison problem, which is due
to several reasons. First, the tests are not conducted on the
same raw data (i.e. different modalities). Second, correction
for multiple comparison is not needed for feature analyses
rather for feature interpretation [47], [48]. Since the tests
are performed for feature selection for the classification
purposes, a correction is not needed.

3.3.3 Feature Selection and Dimensionality Reduc-
tion
In order to maximise the recognition rate measured by AR,
we experimentally compared two feature selection methods

on the extracted statistical features.
First, the statistical test T-test mentioned above was used

to rank the power of each attribute individually. There-
fore, we selected features that exceeded the T-statistics
(ETF) for being significantly different in the two groups
(depressed/non-depressed) (i.e. p-value< 0.05). We initially
performed this task using three approaches: (1) select ETF
based on all subjects’ data before classification, (2) select
ETF of training set in each cross-validation turn, then apply
them on the testing set, where the selected ETF will be
variable in every turn, and (3) select only the mutual ETF of
each training set in each cross-validation turn. Preliminary
experiments showed that overfitting is a potential problem
in all three methods. This warrants further investigation in
the future but is beyond the scope of this study. Neverthe-
less, the classification results were not significantly differ-
ent between the three methods. Therefore, in subsequent
analysis, we used the second approach of ETF to reduce
overfitting, to maintain the subject-independent approach,
and to ensure a fair comparison for each cross-validation
turn.

The second method investigated was a feature transfor-
mation method using PCA. PCA was performed on the
extracted features of individual modalities and then on the
combined features of the fused modalities for improvement
comparison (i.e. to compare improvement and contribution
from each modality with fused modalities). The use of
the PCA for this study was not only for dimensionality
reduction of concatenated features, but also to use the most
promising principal components (PCs) that have the largest
variance (98% of variances) to investigate their effect on
recognition rate.

3.3.4 Normalisation
When modelling inputs with different scales, normalisation
is recommended [49], which is the case in our study. In this
work, min-max normalisation (scaling between 0 and 1)
was performed, which is a linear transformation. It has the
advantage of preserving exactly all relationships in the data
by only changing the scale. However, it does not reduce the
effects of outliers 3. All classifications, statistical tests as
well as PCA were performed on the normalised features.

3.4 Fusion
Multimodal fusion of different modalities can improve
the classification performance, as it provides more useful
information compared to using only a single modality.
Fusion can be performed as pre-matching (early) fusion and
post-matching (late) fusion. As one of the main objectives
of this study is to investigate the best fusion approach for
the classification of depression, three levels of fusion –
feature, score, and decision – were investigated. Figure 3
summarises the method of investigation used in this study.

• Feature fusion: Several methods were implemented
in this study: (1) simply concatenating all extracted

3. Z-score normalisation was also performed, with the results being
similar to min-max normalisation.
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Fig. 3. Summary of the investigated system configurations: (a) feature preparation steps for audio and video data.
Using the normalised features: (b) different feature fusion approaches were investigated, (c) score and decision
fusions were performed after SVM classification, (d) hybrid fusion combined the decisions from the feature fusion
with the decisions from the individual modalities in two approaches (one-level and two-level decision fusions).

features from individual modalities, (2) concatenating
exceeded T-test features (ETF) features from indi-
vidual modalities, and (3) performing a PCA over
the concatenated features (see Figure 3(b)). PCA
was applied on the features extracted from individual
modalities as well as the concatenated features in the
fused modality. 98% of the PCA variance was kept
(empirically chosen), to compare improvement and
contribution from each modality and the usability of
dimensionality reduction.

• Score fusion: Several score techniques were imple-
mented using the distance from the SVM hyper-plane
as scores (see Figure 3 (c)). Simple score fusion
techniques (i.e. sum-rule, and product-rule) as well as
secondary classifier (i.e. SVM) were applied.

• Decision fusion: Similarly to the score fusion, de-
cision fusion fuses decisions (labels) of individual
modalities (see Figure 3 (c)). For decision fusion,
majority voting, and logical OR, as well as a secondary
SVM classifier were also used for comparison.

• Hybrid fusion: This method can employ the ad-
vantages of both early and late fusion strategies.
Therefore, hybrid fusion is investigated in this work
to explore its results improvement and suitability for
our multimodal depression detection goal. Majority
voting and secondary SVM classifier at both one level
and two levels decision fusion were used for hybrid
fusion investigation purposes (see Figure 3 (d)). One-
level decision fusion treats the feature fusion as an
independent modality, where it fuses decision from
feature fused modalities with decisions from individual
modalities using one stage of decision fusion. Two-

level decision fusion uses two stages of decision fusion
such that: (1) a first stage decision fusion fuses the
decision from individual modalities, then (2) a second
stage decision fusion to fuse the first stage decision
with the decision from the feature fused modalities.

Since a larger database with the desired characteristics
(e.g. clinically validated, gender balanced, etc.) was not
available to us for this task, weighted and complex fusion
approaches could not be implemented in this study.

4 RESULTS
Extracted statistical features from speaking behaviour, eye
activities, and head pose were analysed individually and
following fusion. These features were evaluated statistically
to select the most promising ones to be used in the binary
classification experiments.

Table 2 and Table 3 show the classification results from
individual modalities as well as when fused using different
fusion methods, respectively. For each individual modality,
we compared classification using (1) all extracted features,
then with feature dimensionality reduction using: (2) only
features that exceeded the T-statistics (ETF) (i.e. p < 0.05),
and (3) feature transformation using PCA. All results pre-
sented are Average Recall (AR) rates (see Section 3.3.1). In
general, using ETF performed best compared to the other
methods, where individual modality classification results
were already considerably higher than chance level (83%
for speech, 73% for eye, and 63% for head modalities).
This might be due to the statistical nature of the extracted
features.

Classification rates from the speech modality using all
features, and ETF have similar results, even with the
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TABLE 2
Average Recall (AR) classification results for individual modalities. #: Number of features in a super-vector.

Row Individual Modalities # Speech # Eye # Head Average
1 All features 88 81.7 126 68.3 184 66.7 72.2
2 ETF 42-49 83.3 16-23 73.3 8-15 63.3 73.3
3 PCA 27 66.7 36 76.8 5 70.1 71.2

TABLE 3
Average Recall (AR) classification results for fused modalities. #: Number of features in a super-vector. Bold:

highest AR for fusion compared to best result from individual modalities. Italic: highest AR overall. Method
average is the row average to show the average of each fusion method. Fused modalities average is the column

average to show the average of each modality combination.

Row Fused Modalities Speech + Eye Speech + Head Eye + Head All modalities Method
Average

4 Feature Fusion Concatenate All features 214 81.7 272 88.3 310 70.4 398 80.0 80.1
5 Concatenate ETF 59-70 80.0 51-61 83.3 24-37 70.0 69-83 80.0 78.3
6 98% of var. of PCA over concatenated features 47 81.7 46-47 85.0 49-50 65.4 51 78.3 77.6

The rest of fusion methods are performed over the results obtained by ETF
7 Score Fusion Sum-rule 81.7 63.3 63.3 63.3 67.9
8 Product-rule 46.7 60.0 50.0 53.3 52.5
9 SVM 85.0 86.7 78.3 86.7 84.2

10 Decision Fusion Majority 76.7 78.3 68.3 83.3 76.7
11 OR 80.0 68.3 68.3 66.6 70.8
12 SVM 83.3 83.3 73.3 85.0 81.2
13 Hybrid: Two-level Majority 76.7 78.3 70.0 81.7 77.8
14 SVM 83.3 85.0 74.7 85.0 82.0
15 Hybrid: One-level Majority 80.0 85.0 73.3 81.7 80.0
16 SVM 83.3 88.3 73.3 83.3 82.1

Fused Modalities Average 78.5 79.5 69.1 77.6 -

reduction in feature vector size. For eye and head individual
modalities, ETF reduced the feature vector enormously.
Yet for the eye modality, the reduction had an influ-
ence in the improvement of classification results compared
to using all features. Typically, feature selection reduces
complexity and dimensionality, which could improve the
classification results slightly based on a comparative study
[50]. Moreover, improvements in classification results when
using feature selection depend on several factors including
classifier, feature selection algorithm, and dataset [50].
Since these factors are constant for the three modalities,
the considerably improved classification result from eye
modalities suggests that irrelevant features could confuse
and reduce the recognition rate of the classifier.

We also performed a PCA over the extracted features
from individual modalities (see row #3). The results shows
a considerably lower recognition rate for speech modality
compared with the results from using all features and
the statistically selected features (rows #1 and #2). For
eye and head modalities, a slightly higher recognition rate
was obtained from using PCA compared with the results
from using all features and ETF (rows #1 and #2). These
inconstancy between the results of investigated modalities
suggest that even the top 98% of PCA variances do not
have similar discriminative power as in the features selected
by ETF or all features in these cases. Thus, all, ETF,
and PCA features combination effectiveness in depression
recognition rate will be invigilated further in the fused
modalities.

Fusion approaches differ in when and how to fuse the
modalities in question (see Section 3.4). While early fusion
could be executed as sensor fusion or feature fusion, late
fusion is executed either as decision or score fusion. As

the name implies, hybrid fusion is a mixture of both early
and late fusion. Early fusion, late fusion or a hybrid of
both, with different methods of each are investigated. The
result of each method is shown in Table 3. Moreover, we
inspected all possible combinations of the three modalities
to observe the contribution of each modality in the fusion
process. We anticipated that fusing modalities will improve
the performance compared to its individual modalities.
Moreover, we hypothesised that when using all modalities,
modality fusion would not only improve the results from
the individual modalities, but also increase the confidence
level of the final decision.

Regardless of the method, fusing these modalities results
in either higher or at least not catastrophic compared to
individual modality results (with the exception of product-
rule). In general, score fusion using secondary classifier
yielded the highest and the most robust classification rate
(84% average accuracy). However, since a secondary clas-
sifier might risk overfitting, a larger database to validate
this results is needed.

Early fusion, in particular feature fusion, was performed
(see Figure 3(b) for a visual illustration) by (1) concatenat-
ing all extracted features from individual modalities (see
row #4), (2) concatenating ETF features from individual
modalities (row #5), and (3) performing a PCA over the
concatenated features from fused modalities (row #6). With
all but one modality combinations, classification results of
fusing all extracted features (row #4) have a slight improve-
ment compared with the results for individual modalities
(row #1). One exception is when fusing all modalities a
slight reduction in recognition rate occur. On the other
hand, concatenating ETF decreases the results slightly, with
one exception of remarkable improvement when fusing eye
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and head modalities (row #5).
Comparing the three feature selection methods in indi-

vidual and combination of modalities, the average of the
recognition result are similar, with ETF feature selection
yielded the highest results. Since the extracted features are
statistical to overcome normalisation issues, we believe that
statistical feature selection methods best fit the purpose.

We believe that as we are extracting statistical features
from each modality, the feature fusion technique drawbacks
are reduced, such as synchronisation, frame rate and di-
mensionality differences. As expected, feature normalisa-
tion made features from different modalities compatible to
be combined, which reduces classifier bias towards some
features rather than others. Moreover, feature selection
techniques were able to pick the most promising features
for the classification task.

To reduce the complexity for the following fusion ap-
proaches, we selected the results performed by ETF for
individual modalities (see row #2), as well as ETF results
obtained by fusing all modalities (see row #5) for hybrid
fusion. The choice of ETF is due to its stability and
improvement for both individual and fused modalities (see
rows #2 & #5).

With late fusion, we explored score and decision fusion
using several approaches (see rows #7-12). Score fusion
is explored using sum-rule, product-rule, max-rule and
secondary SVM methods, where the scores are the distances
from the SVM hyperplane. On the other hand, decisions
(labels) out of individual modality classifications were also
fused using majority voting, logic AND, logic OR, as well
as a secondary SVM. As expected, max-rule performance
was exactly the same as logic OR performance, therefore
only logic OR is shown in the results table. The same
applies to product-rule and logic AND, where only product-
rule is shown in the results table. This similarity might
imply that using the distance from the SVM hyperplane as
scores is similar to using their decision label. Therefore,
using classification scores might be applicable when fusing
different types of classifiers. Majority voting with an even
number of votes performs similarly to logical AND when
number of votes of each class are equal.

In general, traditional methods of score and decision
fusion results did not improve over individual results, yet at
least the results were not catastrophic (i.e. not worse than
the lowest individual modality results), except for Product-
rule. Worth noting is that signs (positive and negative
scores) are used to identify the class that the subject is
classified as belonging to along with the score, which
is the distances from the SVM hyper plane. That is, a
positive score is given to the depressed class and a negative
score is given to the control class. Therefore, mathematical
operations that rely on the sign of the scores (i.e. max-
rule and product-rule) of individual modalities affect the
mathematical sign of the fused modality. For example, if
a control subject is misclassified as depressed even for
only one modality (a positive sign), the the multiplication
operation in the product-rule fusion classification will result
in classifying that subject as depressed regardless of the

classification of the other modalities. Therefore, the catas-
trophic results obtained by the product-rule score fusion
methods might be due to the effect of the mathematical
operations on the acquired signs of the scores.

Nevertheless, having no improvement in AR is not an
indication of low performance on its own, as it might
increase the decision confidence level. On the other hand,
using a secondary SVM has improved the classification re-
sults in both score and decision fusion. Here, the predicted
classification scores or the labels are used as feature vector,
also in a leave-one-out cross validation.

Hybrid fusion was investigated for the benefits of utilis-
ing both feature fusion and decision fusion. In this study,
hybrid fusion was also examined in two ways in order
to inspect its effectiveness for our multimodal depression
detection. First, using two levels of decision fusion (rows
#13-14). Second, using one-level decision fusion (rows #15-
16). We used majority voting and a secondary SVM as
decision fusion for both one-level and two-levels hybrid
fusion methods. Majority voting was chosen over other
logic functions (e.g. AND), as it seemed more reliable
especially with more votes, while for the two-level hybrid
fusion, where there are two votes, it acted as logic AND.

For hybrid majority voting, even though none improved
over individual modalities, one-level (see row #15) per-
formed better than two-level (see row #13) hybrid fusion
due to having more votes to decide upon. Knowing that
majority voting performs similarly to logical AND with an
even number of votes, one- and two-level hybrid fusion
result in similar decisions when fusing all three modalities.
Even though they perform similarly, we believe that the
majority voting of one-level hybrid fusion is more reliable
and more robust to overfitting than the two-level one. This
is because with one-level hybrid fusion, we end up with
four votes, while with two-levels we end up with two votes.

Acknowledging the risk of overfitting, we performed
a hybrid fusion with secondary SVM on decisions from
individual modalities and fused modalities in a one- (see
row #16) and two- (see row #14) levels decision fusion.
Most of the cases either slightly improved the results or at
least matched the higher individual modality result. As a
secondary SVM might risk overfitting, it would likely need
a larger database for this approach to be validated.

The last column of Table 3 shows the method average.
As can be seen, the highest classification average of the
fusion methods is achieved when using a secondary classi-
fier with the classification scores. However, since using a
secondary classifier might risk overfitting, the result should
be validated using a dataset with a large number of samples.

The last row of Table 3 shows the fused modalities
average, where the average classification results of each
column is calculated to show the average of each modality
combination. As it can be seen, none of the average
classification results of the modalities combination outper-
formed the highest classification results of their individual
modality classification results (row #2 Table 2). Yet, none
of them was worse than the lowest classification results of
their individual modality classification results. Even though
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TABLE 4
Number of misclassified subjects in each modality

Modality Speech Eye Head Concatenated ETF
Depressed Males 3 5 5 5

Females 2 3 2 1
Control Males 3 5 9 5

Females 2 3 6 1

the modalities combination classification average did not
improve compared to the individual modalities, it increases
the confidence level of the final decision.

As mentioned in the background section, comparison
of our current fusion results with previous multimodal
depression detection studies is difficult due to differences
in recording environment (e.g. equipment, paradigm, etc.),
and methodology (e.g. extracted features, classification
label, fusion methods, etc.). Regardless of methodology
differences, the general improvement in the results when
fusion techniques are used in this study is in line with
the improvement in results of the previous studies [19]–
[23]. Despite the difference in type of extracted features
in our previous study [23], the results from different fusion
techniques show similarity with this current study. Similarly
to current results, in [23] a secondary classifier produced
higher results than other fusion techniques of the same
fusion level. Unlike [23] where using PCA in feature
fusion performed the best compared to other feature fusion
techniques, it performed the worst in this study, which
might be due to the differences in the type of investigated
features (low-level features vs. functional features).

5 ERROR ANALYSIS
For a better understanding of the misclassifications in each
modality, we analysed the errors based on subjects’ meta-
data. Table 4 shows the number of subjects that have been
misclassified in each modality (speech, eye, head) as well
as feature fusion when using ETF.

As can be seen, for each modality, the chance of misclas-
sifying males is higher than for females for both depressed
and control groups (except for the head modality). This
result is consistent with previous findings of gender differ-
ences [51] that depression in women may be more likely to
be detected than depression in men. We speculate that this
might be related to the theory that women are more likely
to amplify their mood [51]. The same study suggested that
men are more likely to engage in distracting behaviours that
dampen their mood when depressed. However, that does not
explain the misclassifications of male control subjects.

For the speech modality, as our features are behavioural
in nature (e.g. response time), signal quality and gender-
dependent feature issues are eliminated. The number of
misclassified depressed and controls from both male and
female are equivalent. That might be due to the opti-
misation of SVM parameters, where the AR results is
higher with balanced classification rate from the two classes
than unbalanced classification. Nevertheless, female subject
misclassifications is less than the misclassification of male
subjects of both classes.

With eye and head modalities, we explored the effect of
video quality and whether the subject was wearing glasses.
Regarding video quality, only three videos had slightly
blurred images (all from the control subset). All three
have misclassifications from the head modality and only
one has misclassifications from the eye modality. However,
that does not explain the misclassifications from normal
quality videos. Besides, as the eye-AAM and face-AAM
were annotated and trained in a subject-dependent manner,
it is also dependent on the recording conditions. Therefore,
we believe that the misclassifications were not based on the
quality of the video or the method used.

We also looked at errors based on age, diagnosis, depres-
sion score, medications (current and history), family his-
tory, smoking and alcohol consumption; none of which had
an effect on the classification errors. Moreover, Australia is
a multicultural country, therefore, even with selecting native
Australian English speakers, three subjects have an Asian
heritage appearance (all control subjects: one older male
and two young females). While none of the Asian young
females were misclassified in most modalities (only one
of the females was misclassified using the head modality),
the Asian male was misclassified in each modality and
combined modalities. As there is not enough data to draw
a conclusion, future work could investigate the influence of
cultural backgrounds.

Therefore, we believe that, as all extracted features were
behavioural in nature, subjects of certain personalities and
backgrounds might act and behave differently regardless of
their mental health. For example, depressed patients who
have more head movement as they speak are misclassified
as control subjects and vice versa. The same applies for the
eye and speech modalities. As the current data collection
did not include personality assessment, we could not derive
a solid conclusion, which is also being considered for
our ongoing data collection. Nevertheless, the current error
analysis is rudimentary, where a formal and statistical based
analysis is needed to validate these results. Since the scope
and focus of this paper is on classification, future work
should advance such error analysis, as performed in [52].

6 CONCLUSIONS

Intending to ultimately develop an objective multimodal
system that supports therapists during the diagnosis and
monitoring of clinical depression, we investigated verbal
and nonverbal statistical patterns of depression individually
and when fused. To develop a classification system-oriented
approach, this paper conducted feature selection, classi-
fication and fusion-based experiments to conclude which
combinations of behaviour (verbal and nonverbal) can best
discriminate between depression and non-depression. We
analysed the statistical significance of each feature of
depression behaviour from these modalities to select the
most relevant features for classification.

We examined the performance of binary classification
using these modalities individually and when fused in
different combinations. An SVM classifier was used for
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classification using several feature selection methods and
several fusion approaches. Given the statistical nature of the
extracted features, using T-test as feature selection method
performed best compared to the other methods, where
individual modality classification results were already con-
siderably higher than chance level (83% for speech, 73%
for eye, and 63% for head modalities).

When fusing these modalities using different fusion
methods, the results were either higher or at least not
catastrophic compared to individual modality results (with
the exception of product-rule). Among the different fusion
approaches used here, the highest and the most robust
fusion method was score fusion using secondary classi-
fier, giving up to 84% average accuracy. As a secondary
classifier of score, decision, and hybrid fusion might risk
overfitting, it would likely need a larger database for this
approach to be convincing and valid.

Finally, we have analysed the classification errors for a
better understanding of our method for detecting depres-
sion. In line with the literature, depression in women is
more likely to be correctly classified than in men from
either group (depressed and control). We eliminated several
technical issues that might have an effect on the classifica-
tion, including audio and video quality, gender-dependent
features, and recording conditions. Moreover, none of the
subjects’ meta-data had an effect on the classification. It
should also be noted that depression diagnosis is also based
on clinical history, not just mental state examination, which
was the focus of this present study.

7 LIMITATIONS AND FUTURE WORK

Even though it is a common problem in similar studies,
a known limitation is the relatively modest number of
(depressed and control) subjects because of the selection
criteria imposed in this paper. A large-scale study using
clinically validated depression diagnosis is preferable, how-
ever, to the best of our knowledge, is not available. Crowd-
sourcing is one means of sourcing very large amounts
of data that is growing in popularity, but crowd-sourcing
such depression datasets not only could lack the clinical
assessment, which we believe is crucial, but also might
lack variety of depression severity scores. As the Black Dog
Institute data collection is ongoing, we anticipate reporting
on a larger dataset in the future. Moreover, future data
collection will aim to match and model the ethnicity and
culture to investigate their influence on the expression of
emotion and on automated depression detection.

Moreover, to get as accurate features as possible, we have
used manual annotation for speech, and subject-specific
AAM for eye and head (automatic feature extraction was
not the focus of this study). Speech annotation and speaker
separation could be attempted automatically using advanced
speaker diarisation techniques. Regarding eye activity fea-
tures, automated algorithms that measure blink, eyelids
and iris movements could be utilised for this task. For
head pose and movement, a general face tracker could
be effective in extracting head pose features. Therefore,

having a fully automated system to extract and analyse
the proposed features is feasible for the task of detecting
depression but was not the focus of this study.

In this work, depression was investigated in a binary
classification manner (i.e. severe depressed vs. healthy con-
trols). However, having a regression classification problem
to detect depression severity could be a next step for an
advanced depression diagnosis system. Such a regression
problem needs a large dataset with a variety of depression
severity scores, as mentioned above, noting the difficulty of
obtaining an agreed severity score from clinical assessment.
Furthermore, fusing prediction scores of a regression classi-
fication requires different fusion methods than the ones used
for fusion of classifiers. While the current study focused
on between-subjects design, a within-subjects design would
assist in longitudinal monitoring of depression. Future
automated depression monitoring studies could consider
this promising analysis.

Further fusion approaches in recent years have been
presented by [53]–[55]. It would be worthwhile to explore
their usage in the context of multimodal depression de-
tection in the future, as it is beyond the scope of this
paper. Moreover, other features such as vocal prosody (e.g.
energy, pitch) and facial expressions could be extracted and
fused with the current investigated approach. This study
focused on extracting, analysing, and selecting behavioural
patterns of subjects’ responses, where speech behaviour,
eye activity, and head movement were investigated. Vocal
prosody, facial expressions, and body posture modalities
were not included in this paper, but are acknowledged
as potential sources of information. However, future work
will investigate such modalities, seeking more accurate and
confident diagnoses of depression. Moreover, the findings
of the current study will be validated (using the same proto-
col) for generalisation across cultures (American, German,
Saudi) and languages (American-English, German, Arabic)
using different datasets.
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