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Abstract—Cryptographic algorithms are becoming popular due 
to their applicability and suitability for use in constrained 
environment such as mobile sensor information applications. It is 
well known in these applications, both computing resources and 
power availability are limiting factors. Hence, it is expecting to 
have cryptographic algorithms with low power consuming, less 
computing, and high security for mobile sensor networks.  
Elliptic curve cryptography (ECC) is an emerging favorite 
because requires less computational power, communication 
bandwidth, and memory when compared to other cryptosystems.  
In this paper we present our new design, a hidden generator point, 
which offers an improvement in protection from the man-in-
middle (MinM) attack which is a major vulnerability for the 
sensor networks.  Even though there are other ways to implement 
hidden generator point, which are on the way to be published in 
our future paper, the presented algorisms can show the hidden 
generator point does work. Also, a new algorithm based on ones 
complement for fast scalar multiplication is first introduced, 
which yields a 12.5% improvement in efficiency in comparison 
with the results of other common complementary algorithms 
reported. 

  

Keywords-elliptic curve crytographic(ECC); public key; hiden 
generator point; man-in-middle attack, fast scalar multiplication 

I.  INTRODUCTION  
The importance of security in communication systems has 
become increasingly prominent and key cryptography 
technologies have been developing rapidly to address them. 
Wireless network (WN) has been experiencing an explosive 
growth in recent years and offered attractive flexibility to 
network operators and users. 

.Elliptic curve cryptography (ECC) has been widely 
investigated for public-key cryptography purposes [1,2]. It was 
introduced by Koblitz and Miller in 1980s and has attracted 
increasing attention in recent years due to its linear scalability, 
a small software footprint, low hardware implementation cost, 
low bandwidth requirement, and high device performance.    

Normally the structure of an ECC operation involves three 
computational levels, namely scalar multiplication algorithm, 
point arithmetic and field arithmetic [3]. The main focus has 
been on improvements at the point arithmetic level to decrease 
the time of ECC scalar multiplication.  For point adding, a 
combination of projective and affine coordinates, i.e. mixed 
addition [4], has offered an efficient formula.   In the case of 
adding points in the same coordinate system, the required 
formula proves more costly and is realized   as general 
addition.  Recently, some approaches have been developed to 
compute faster scalar multiplications, such as double-base 
chain [5], and ternary/binary method [6] which have introduced 
tripling as a new point operation.  Several papers discuss 
particular implementations over different situations [7-14].  
Some of them have raised different ways to investigate the 
EEC such as multi-base system in ECC [15] and key exchange 
protocol in elliptic curve cryptography with no public point [8] 
that is complex and high time costs.  In this paper, a new 
algorithm based on ones complement for fast scalar 
multiplication is first introduced, with which 12.5% time is 
saved in comparison with the results of other complementary 
method based algorithms [17]. 

In real life, the wireless mobile and sensor networks are 
vulnerable to the  so-called man-in-middle (MinM) attacks. 
This is due to wireless mobile and sensor networks being  very 
limited in computing functions and  resources.  Therefore, there 
is strong motivation to design protection of the networks from 
this type of attacks.  The 2nd contribution in this paper we 
present two simple ways to protect networks from man-in-
middle attacks based on the technology we called hidden 
generator point over elliptic curve cryptography for public 
keys.  In fact, there are other ways to implement hidden 
generator point, which can found in our future papers where 
the calculations will be lower than that in this paper. 

The next section will discuss the general traditional elliptic 
curve cryptography relevant to our focus. This will be adapted 
to develop new protocols to protect the networks from the man-
in-middle attacks.  In the following sections, the two ways 
based on the hidden generator point will be investigated, and 
use them to develop the proposed, more robust algorithm.  
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Section 4 proposes the new algorithm based on one’s 
complement for fast scalar multiplication. The paper concludes 
with a summary of work completed and results achieved.  

II. TRADITIONAL PROTOCOL IN ELLIPTIC CRYPTOGRAPHY 
An elliptic curve is the set of solutions of an equation of the 

form can be shown as below: 

edxcxxbyaxyy +++=++ 232   (1) 

Where a, b, c, d, and e, are real numbers. 

A special addition operation is defined over elliptic curves and 
this with the inclusion of a point O, called point at infinity.  If 
three points are on a line intersecting an elliptic curve, then 
their sum is equal to this point at infinity O, which acts as the 
identity element for this addition operation.  Sometimes the 
general equation (1) can be referred as Weierstrass equation as 
shown in (2): 

baxxy ++= 32    (2) 

If we wanted use a elliptic curve to be used for cryptography 
the necessary condition is the curve is not singular, i.e. the 
discriminant of polynomial f(x) = x3 +ax +b : 

0274 23 ≠+ ba    (3) 

Figures 1 and 2 show the two elliptic curves are  

5232 ++= xxy    (4) 

and  

 1232 +−= xxy    (5) 

We can see those two equations meet (3). 

 

 

Figure 1.  Elliptic curves equation (4)    

   An elliptic group over the Galois Field Ep(a,b) is obtained by 
computing x3 + ax + b mod p for 0 � x < p.  The constants a 
and b are non negative integers smaller than the prime number 
p and as here we used “mod p”, so equation (3) should be read 
as: 

4a3 +27b2 mod p � 0   (6) 

 

Figure 2.  Elliptic curve eqaution (5) 

 For each value of x one needs to determine whether or not 
it is a quadratic residue.  If it is the case, then there are two 
values in the elliptic group.  If not, then the point is not in the 
elliptic Ep(a,b) group. 

When we fixed a prime number, p and then we can have the 
Galois Field Ep(a,b) group via the fixed constants a and b 
following the above conditions. 

For example, let the points P =(x1, y1) and Q (x2,y2) be in 
the elliptic group Ep(a,b) group and O be the point at infinity.  
The rules for addition over the elliptic group Ep(a,b) are : 

(1) P+O = O + P = P 
 

(2) If x2 = x1 and y2 = -y1, that is P(x1, y1) and Q = (x2, y2) = 
(x1-y1) = -P, that is the case:  P+Q = O. 

 
(3) If Q � –P, then their sum P + Q  = (x3, y3) is given by ; 

pxxx  mod 21
2

3 −−= λ  

pyxxy  mod )( 1313 −−= λ   (7) 
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In order to express our new protocol of the hidden 
generator point we, without losing generality, use an example 
for the above description.  Let’s assume p = 23 and a = 1 and b 
=1, i.e. the equation becomes: y2 = x3 +x +1 mod 23.  We have 
4a3 +27b2 mod 23 = 8 � 0.  Now we need to determine if y2 is 
in the set of quadratic residues or not.  The calculation results 
are shown below for the elliptic group Ep(a,b) = E23 (1,1) 
which includes the point (4, 0) corresponding to the single 
value y = 0. 

The elliptic curve cryptography can be used to encrypt 
plaintext messages, M, into ciphertexts.  The plaintext message 
M is encoded into a point PM from the finite set of points in the 
elliptic group, Ep(a,b).  First step consists in choosing a 
generator point, G∈ Ep(a,b), such that the smallest value of n 
for  which nG = O is a very large prime number.   Normally the 
traditional ECC protocol is that let the elliptic group Ep(a,b) 
and the generator point G be in public.  Each user selects a 
private key, say nA < n and compute the public key PA as PA = 
nAG.  Then, the case becomes encrypting the message point PM 
for the partner, say from Alice to Bob.  So Alice (A) chose a 
random integer k and computes the ciphertext pair of points PC 
using Bob’s public key PB: 

)](),[( BMC kPPkGP +=   (9) 

Bob received the ciphertext pair of points, PC then multiplies 
the first point, (kG) with his private key, nB, and then adds the 
result to the second point in the ciphertext pair of points as 
shown below: 

MBBM PkGnkPP =−+ )]([)(   (10) 

which is the plaintext point, corresponding to the plaintext 
message M.  It is noted that only Bob can obtain retrieve the 
plantext information PM by the private key nB.  The 
cryptographic strength of ECC lies in the difficulty for a 
cryptanalyst to determine the secret random number k from kP 
and P itself. The fast method to solve this problem is known as 
the elliptic curve logarithm problem (ECLP) [16]. 

III.  HIDDEN GENERATOR POINT PROTOCOL  
It is clearly to see that ECC did not take care of the man-in-

middle attacks even ECC itself has its cryptographic strength as 
described above.   There should be many ways to carry on the 
hidden generator point protocol; even very few papers 
discussed this issue for ECC applications.   The next section 
two ways to be discussed for implementing “hidden generator 
protocol,” further reports about other methods will be discussed 
in other papers due to the paper size. 

As above case showed that the generator point G and 
elliptic group Ep(a,b) are in public.  Now let’s have a closer 
look at the elliptic group Ep(a,b).  In our above example, we 

pick the prime number p = 23 (it is noted that this is only for 
explaining the new protocol, in real life the p is much bigger 
than this), we have quadratic residues group (p-1)/2 = 11 and 
for this group the Ep(a,b) can be shown as below: 
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      (11) 

As we described in above that any point is sitting in 
equation (11) can be appointed as generator point “G,”, or we 
may expressed as ∨qi ∈ E23(1,1) can be point G, where q is a 
component of the E23(1,1). In a traditional way (as in section II) 
the G is fixed and let it be in public.  But we shall make totally 
different way as described in the following contents.  As the 
generator point, “G,” that used to be appointed in public now 
will be hidden in our method, so that there is no way to know 
which point qi ∈ E23(1,1) can be point G.  Therefore, the 
attacker cannot make the “man-in-middle” attack, if it was the 
case to be happened.   

Next, we shall show two ways to complete the ECC 
processing with our hidden generator point algorism, namely 
(1) make a new protocol that has the common principle to work 
out the generator point, say from the distribution of elliptic 
Ep(a,b) group; or (2) by the new protocol to work out the PM as 
shown below.  

In order to make a common principle to work out the 
generator point for Alice and Bob, for example we attempt to 
use the distribution of elliptic  Ep(a,b) group.  We first need to 
check what the distribution of Ep(a,b) group looks like.  For 
this example, the equation (11) is already given and can be 
shown in Figure 3. 

 

Distribution of Elliptic Group 
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Figure 3.  Distribution of Elliptic Group E23(1,1). 
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We may pick a generator point G by a character of the above 
distribution, say we pick the G when G (a, b)  ∈ Ep(a,b) with a 
= max {a} and b = max {b} (it is noted that other principle will 
apply, if it is designed as different principle). In this example, 
G = (19, 18).  Note that we assume that put a = max {a} first, 
so choosing it a = 19 then choose b = max {b}.  The order is 
important, in this example the appointed G it is not the G = (18, 
20).  When the generator point is fixed by our new protocol, we 
can have the following processing that was described in section 
II.  It is obviously that this way is more secure as what a 
attacker has to do is that decrypting the message from Bob re-
encrypt it with Alice’s key and he can monitor the 
communication without detection. It involves the user of a 
trusted “certificate authority” (CA).  When is queried the CA 
and returns a digitally signed “certificate” that can be compared 
to one that has been transmitted by another means.  In an 
authenticated key exchange based on the difficulty of the kth 
root problem was described in section II.  This way can be 
shown as Figure 4. 

 

 
 

Figure 4.  Block diagram for hidden generator point principle.   The top plan 
is figure 3. When a generator is fixed by the distribution of the elliptic group 

then the P = kQ plan formed.  

Now let’s turn to the 2nd way, i.e., a new protocol to get the 
hidden generator point done. 

In the 2nd approach, we need to address the case that Alice 
has no information about Bob’s public key as traditional way 
does.  Therefore if Alice would like to send a message to Bob, 
Alice cannot use public key to make cryptography to the 
message Alice wanted to send.  We may use, as an example, a 
protocol shown in Figure 5. 

When Alice is going to send the message to Bob, Alice 
sends the pair of points PC (as shown (1) in the figure) as 
below:  

)](),[( 111 GnPnGnP AMAAC
−−− +=   (12) 

Here, n-1
A meets the equation: unity = n-1

A nA, we still called   
n-1

A as private key for Alice but there is no need to worry about 
the public key as G is hidden at current situation.  So either PA 
or PB is not really useful in this case. When Bob received PC, 
he can operate as below: 

 GnGnPnPn AAMAMA
1111 −−−− −+=  (13) 

Then, Bob can make PD as below and sends it to Alice as 
shown the (2) in Figure 5. 

  MBAD PnnP 11 −−=     (14) 

When Alice received PD, Alice can make PE and sent it to Bob 
as shown (3) in the Figure 5. 

MBMBAADAE PnPnnnPnP 111 ))(()( −−− ===  (15) 

Then when Bob received PE, Bob can obtain the message 
related PM that sent from Alice by  

 MBBM PnnP 1−=     (16) 

This can obtained only by Bob as no one has the private key 
that Bob has. 

 

    

Figure 5.  A protocol for the ECC with hidden generator point.  

From the above discussion, it is clear that the first way 
described is less computing efficient  in comparison with the 
second way due to the “mutual understanding” aspects of the 
protocol. However, it is need the “common principle” or 
“common protocol” before the communication.  If this 
common protocol is to be sent by communication network it 
will have a risk to be attacked or it will have to create a “safe 
way” to inform first then go ahead for the rest.  For the second 
way, it is clearly that it takes more time than that in traditional 
way to compute, which is the price to pay for protecting 
communications from the man-in-middle attacks without 
sending “common principle”.   In fact, it is noted that if the 
“mutual understanding” is a function of the distribution of 
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Ep(a,b), it could be a algorism for the hidden generator point, 
which will be discussed in our future paper.  

IV. RELATED SPEEDING UP ALGORITHMS OVER ECC 
Experiments showed that for the popular and powerful 

ECCs, the most expensive operation in elliptic curve based 
cryptographic protocol is the scalar multiplication. Several 
researchers have investigated this issue, such as ECC using 
modified complementary [17], binary method [18], non-
adjacent form (NAF) [19], and mutual opposite form (MOF) 
[18] and complements method [20], etc.  

The scalar multiplication is very expensive operation in 
elliptic curve based cryptographic protocol.  Hence, the speed 
of scalar multiplication plays is a crucial factor in developing a 
an  efficient system.  

Scalar multiplication is a computation of the form Q = kP, 
where P and Q are the elliptic curve points (as figures shown) 
and k is an integer.  It can be obtained by repeated elliptic curve 
point addition and doubling operations.  In the binary 
algorithms, the integer k is represented as  

	
−

=

=
1

0
2

l

j

j
jkk  where  kj ∈{0,1},   (17) 

which scans the bits of k either from left-to-right or right-to-
left. The cost of multiplication depends on the length of the 
binary representation of k and the number of Harming weight 
of scalar representation in this representation. If the 
representation (kn-1…k0)2 with kn-1�0 then the number of 
doubling operation is (n-1).  In an average, binary algorithm 
requires (n-1) doublings and (n-1)/2 additions.  For example, 
k= 1778, then k= (11011111100)2  so computation of 1778 P 
requires 10 doublings and 5 additions. 

It is well known that a algorithm called non-adjacent form 
(NAF), based on the fact that k is represented as  

	
−

=
=

1

0
2

l

j

j
jkk , with kj ∈{-1, 0, 1},  (18) 

which using three digits    {0, 1, -1}-radix 2 representation and 
this conversion is taken from right-to-left, which is different 
from equation (17). The average Hamming weight of signed 
binary representation is n/3 and it has the lower Hamming 
weight than the binary algorithm.  However, it is noted the 
Hamming weight is one of keys to handle computation load, 
for example, k = 255, or (11111111)2, computation of 255P 
requires 7 point additions, but if it is transformed by 
(10000000-1)P, which is 256P-P, only one addition is required. 

Another algorithm is relevant, the mutual opposite form 
(MOF), which converts the binary string to MOF from the most 
significant bit efficiently.  The n-bit binary string k is converted 
into a signed binary string.  The conversion of MOF 
representation of an integer is highly flexible because 
conversion can be made either from right-to-left or left-to-right.  
The output of MOF is comparable efficiency with out of NAF 
as shown in. 

As described above it is clear that every mentioned 
algorithm targets decreasing the Hamming weight to increase 
efficiency of computation for ECC.  The MOF and 
complementary algorithms have similar performance in terms 
of computation costs we may take complementary algorithm as 
part of hybrid algorithm as shown below.  But we need to 
present the so-called “the 1’s complement of binary numbers” 
described by Gillie [21, 22, 23]. 

The 1’s complement of any binary number may be found 
by the following equation [21]: 

 kC a −−= )12(1      (19)  

 

Or  1)12( Ck a −−=     (20) 

 

where C1 = 1’s complement of the number 

 a = number of digits to be handled by the computer 

k = binary number whose 1’s complement   

As an example, let k =1788, or k = (11011111100)2 in its 
binary form. C1 = 1’s Complement of the number of k and the 
a in this example it is in binary form is 11.    
 
Therefore from the equation (18) we have: 
  

10010000001   
)01101111110()12()12( 11

1

=
−−=−−= kC a

 (21) 

 

Therefore we 

                     
10010000001)1(2   

)12(1788
11

1

−−=

−−== Ck a

  (22) 

 

This means k = 1788 = (100000000000 – 00100000011–1)2,  

which gives : 

 

 1788 = 2048 – 256 – 2 – 1 – 1  (23) 

 

Hence, from above equation we can see that the Hamming 
Weight of scalar k has reduced from original 8 to current 5, 
which will save 3 elliptic curve addition operations. One 
addition operation requires 2 squaring, 2 multiplications and 1 
inverse operation.  But if the original binary form of k is 
critical for this method as if the number of 1s in original 
binary form of k  is >  the one-half of the bit’s length, i.e. 1’s 
number � a/2 then there is no need to convert the original 
binary format into “1’s complement format” as our target is to 
decrease Harming weight.   

Therefore, our proposed algorithm is that first check the 
1’s number of the binary form, if it is � a/2, then go to the 
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“complementary algorithm”, if it is not, then go to “1’s 
complement format”, i.e. go to the equation (19) then go to 
equation (20). We have the algorithm as shown below: 
 
Algorithm for faster scalar multiplication on elliptic 
curves: 
 
 

( )
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It is noted that there is a checking processing before we go 
ahead to calculate the scalar multiplication,. There is time cost 
but as the either way for the computation of the scale 
multiplication is the most efficient due to the minimizing 
Harming weight the saved time can pay the checking costs.  In 
fact the final results, which are shown in the next section by the 
table, support this conclusion that the checking processing is 
relatively negligible cost in comparison with the saved time 
when the Harming weight is minimized. 

 

V. CONCLUSION  
In recent years some cryptographic algorithms have 

obtained popularity due to properties that make them suitable 
for use in constrained environment such as mobile information 
appliances, sensor networks, where computing resources and 
power availability are limited.  Elliptic curve cryptography 
(ECC) is one of them.  However, in the applications of ECC, in 
particular for the sensor networks there are always so-called 
man-in–middle attacks, in particular those networks are with 
very limited computing capacity and restricted power 
resources, which drew the researchers’ attractions.  In this 
paper we have presented two methods for protecting from man-
in-middle attacks based on hidden generator point with ECC. 

The efficiency of ECC implementation is highly dependent 
on the performance of arithmetic operations of scalar 
multiplication.  This paper based on discussions of the current 
major algorithms present a novel algorithm, hybrid of the “1’s 
complement of binary number” and “complementary” to 
minimizing Harming weight to speed up the calculation over 
ECC. In terms of average, the proposed algorithm is about 
12.5% saved time in comparison with the results of 
complementary based algorithm in [17]. 

As we have seen from the check processing, there is always 
the case that the Hamming Weight will less than the half of the 
length (in terms of digit number) and the either complement of 
the number method or 1’s complement of the number method 
will constantly keep the Hamming Weight minimizing, which 
makes this method sitting on the very power saving position 
due to the computing works.     
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Figure 6.    Comparison the proposed algorithm with the nominated 
algorithms by [17] (the data for the nominated algorithms were used from the 

same reference).  
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