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ABSTRACT 

A maximum likelihood for Bayesian estimator based on &stable 
is discussed. Closer to a realistic situation, and unlike previous 
methods used for Bayesian estimator, for the case discussed here 
it is not necessary to know the variance of the noise. The 
parameters relative to Bayesian estimators of the model built up 
are carefully investigated after a discussion of &stable 3-D 
simulations for a maximum likelihood. The Bayesian estimator 
then is established. As an example, an improved Bayesian 
estimator that is a natural extension of the Wiener solution and 
other wavelet denoising (sol? and hard threshold methods), is 
presented to illustrate our discussion. 

1. INTRODUCTION 

Wavelet transform as a powerful tool for recovering signals from 
noise has been of considerably interest 11-71. In fact, wavelet 
theory combines many existing concepts into a global framework 
and hence becomes a powerful tool for several domains of 
application. 

Those methods that compute the correlation between coefficients 
at successive scales are based on the assumption that regular 
signal features show correlated coefficients at different scales, 
whereas irregularities due to noise do not 121. 

As mentioned by Achim el al. 181, there are two major drawbacks 
for thresholding. One is that choice of the threshold is always 
done in an ad hoc manner: another is that the specific distributions 
of the signal and noise may not be well matched at different 
scales. 

Donoho gives some minimum thresholds for several threshold 
schemes, titled "universal thresholds". These explicitly depend on 
the standard deviation of noise. where the standard deviation is 
assumed to be known. In practice, the standard deviation can be 
readily estimated using the methods discussed in 131, [9]. For 
some applications the optimal threshold can be computed. An 
approach different from "universal thresholds" is presented by 
Weyich and Nason I l O l .  in which cross-validation is used. Two 
approaches to cross validation are used. namely ordinary cross 
validation (OCV) and generalised cross validation (CCV): each is 
used to minimize the least-squares error between the original 
(which is the unknown value) function and its estimate based on 
the noisy observation. 

Several groups working on multispectral image restoration 
1111, multichannel image restoration I121, and multiframe 
image restoration [13], have explored the Wiener filter. It 
i s  well known that a classical solution that deals with the 
noise removal problem is  the Wiener filter [14]. [15]. 
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However this method. designed mainly for additive noise 
suppression, has its limitations. 

Modelling the statistics of natural images is a challenging task 
because of the high dimensionality of the signal and the 
complexity of statistical structures that are prevalent. Numerous 
papers discuss modelling the statistics of nature images, including 
Bayesian processing presuppose proper modelling for the prior 
probahilitydensity function ofthe signal [8, 14, 15.16, 17. 181. In 
this paper the maximum likelihood for Bayesian estimator based 
on a-stable for image is discussed, and a method is offered such 
that it removes noise images without information about the noise- 
variance, even though this is one of key-parameters for normal 
Bayesian estimators. 

2. ALPHA-STABLE DISTRIBUTIONS AND 
MAXIMUM LIKELIHOOD 

Tsakalides el al. [191. Achim el d. 18) and Peterson et al. I201 
recently showed that alpha-stable distributions. a family of heavy 
tailed densities. are sufficiently flexible and rich to appropriately 
model wavelet coefficients of images in denoising applications. 
In this section we shall investigate maximum likelihood for an 
alpha-stable distribution after briefly introduce symmetric alpha- 
stable distribution (Sas). 

It is well known that the Sa5 distribution is defined by its 
characteristic function: 

@(U) = exp(j6w - Y I w 1% (1) 
The parameters a and 6 describe completely a SaS 
distribution. The characteristic exponent acontrols the heaviness 
of the tails of the stable density. a c a n  take values in (021: while 
a = 1 and 2 are the Cauchy and Gaussian cases. There is not 
closed-form expression known for the general SaS probability 
density function (PDF). The dispersion parameter y (y>O) refers 
to the spread of the PDF. The location parameter 6 i s  analogous 
to the mean of the PDF. Figure 1 shows the PDF for alpha-stable 
with different alpha, 1.0 to 2.0 when gamma takes 0.3. For 
comparison with the Laplace distribution, which was described in 
[I81 with s =1.5 and p = 0.8 is included in Figure 1. It is clearly 
shown that the smaller avalue implies heavier tails and Laplace 
distribution is significantly different from that of alpha-stable 
distributions. 

It is well known that if it is possible to minimize the mean square 
error (MSE). which is one of our major targets for denoising, 
when the bias is zero, and then the variance is also minimized. 
Such estimators are called "minimum variance unbiased" 
estimators, and they attain an important minimum bound on the 
variance of the estimator. called minimum variance bound. 



Figure 1: PDF for alpha-stable with (from top to down a = 1.0. 
1.5 1.8. and 2.0 and Laplace distribution. 

If a variable 6' is unbiased it follows that 
- 

E ( 6 - 8 )  = O  (2) 
which can be expressed as: 

(3) -- 
where W )  = [xI (5 ) .x2 (5 )  ,..., x N ( n l T  and 

fkB  (% 8) is the joint  density of X'(8 , which depends 

on a fured but unknown parameter 

Following [18] we have 

The function In fR.(%@) is well known as the "log 
likelihood" function of B (LLF). Its maximum likelihood 
estimate can be obtained from the equation: 

a In f t B  (%e) 
as = O  

The first order of differential log likelihood function with respect 
to 8 is called the maximum likelihood (ML) estimate. If the 
efficient estimate does not exist, then the ML estimate will not 
achieve the lower bound and hence it is difficult to ascertain how 
closely the variance of any estimate will approach the bound. 

Figure 2 show that the LLF simulation results for the alpha-stable 
with a = (0 ,451. x =[-6. -61, with y =  0.1. Its 2" order LLF 
distributions are shown in Figure 3, which shows the view from 
the a axis of Figure 2, from which we can see why generally the 
value of a h a s  been taken in the range [1,21. The value about 1.5 
is strongly recommended if there is no information about a. 

Figure 2:  The 2" order simulations of the LLF for an alpha-stable 
with g = 0.1 

Figure 3: The view of the results of Figure 2 from the front of the 
alpha-axis. 

3. BAYESIAN ESTIMATOR 

If we take the probability density of Bas p ( @ :  and the posterior 
density function as f(@ I X, ,..., X,) , then the updated 
orobability densilv function of Bis as follows: 

f (e ,x ,  ...., x,) 
f (X,  ..., X") 

f(B I x,, ..., X") = 

- (6) 
p(e)  f(x ,,..., X, I e) 

j f ( ~ ~ , . . . . ~ ~  ie)p(e)de 
If we estimate the parameters of the prior distributions of the 
signal sand noise q components of the wavelet coeffcients c, we 
may use the parameters to form the prior PDFs of PSs) and P&), 
hence the inpulloutput relationship can be established by the 
Bayesian estimator. namely, let inpuUoutput of the Bayesian 
estimator =BE, we have: 
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(7) 

Figure 4 shows how yaffect the BE and Figure 5 shows how U 
affects the BE. 
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Figure 4: How yaffects BE. Here y ranges from 0.08 to 1.0, with 
U= 4.5. a= 1.702. 
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Figure 5: How oaffects BE. Here oranges from 1.0 to IO. with y 
= 0.3, a= 1.702. 

As we mentioned above for the Bayesian estimators the three 
parameters are important and can affect the BE strongly. Achim 
et al. 181 tried to take yo as one parameter and showed a 
simulation hy keeping vu constant, but the fact is that even 
though the ratio is the same the BE can he significantly different. 
However, it is noted that the o i s  generally estimated and we may 
even have no information about it. However, as in section E we 
may take a= 1.5 as  fist estimate. Hence we can obtain the BE 
from the Figure 6. where yuis taken tiom 0.1. to 0.8. It is clearly 
seen that when ratio equals to 0.8 the BE becomes the similar to 
the case of the hard threshold presented by Donoho. It is to be 
noticed that the identity line can be a reference for individual BE 
curve. 
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Figure 6: Individual BE with ratio of (yo) equals to 0.1.0.2,0.E5. 
0.5 and 0.8 and a= 1.5 taken from section 2. The BE with 0.8 is 
similar to "hard threshold" case. 

4. SOME EXAMPLES 

When we make measurements. we have no information about the 
noise value of the image we obtained. The only information one 
may have is an experience in judgement of the noise level, which 
becomes the outline of the denoising strategy. 

Figure 7 shows the denoising with Haar wavelet in 2 levels. 

Figure 7: Denoising image of the web page of "University of 
Canberra" by Haar wavelet in 2 levels. 

Figure 8 shows the noisy image. If we did not have any 
information about the noisy image, we can. as mentioned above, 
take a= 1.5 and (Yo) = 0.5 and the denoised image is in Figure 9. 
The results by other methods, together with the Bayesian 
estimator for a-stable method, are given in the table 1. 
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stable distribution. 
Comparisons of other denoising results are in table 1. 
Method 1 1  1 2  1 3  1 4  
SMSE 112.21 I 12.30 I 12.01 I 12.89 
Table  1: Comparison of denoising results with BE in  signal 
to mean square error (S/MSE) in dB. Here I= soft 
thresholding: 2 = Hard thresholding; 3 = Homomorphic 
Wiener; 4 = Bayesian estimator based on a-stable 

4. CONCLUSION 
A new technique for denoising an image has been developed. The 
technique uses the statistician's Bayesian estimator theory to 
simplify the selection of parameters. and in some situations it 
provides more precise images than other methods. 
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