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Multilevel and spatial analyses 
of childhood malnutrition 
in Uganda: examining individual 
and contextual factors
Prince M. Amegbor1,2*, Zhaoxi Zhang1,2, Rikke Dalgaard1,2 & Clive E. Sabel1,2

In this study, we examine the concepts of spatial dependence and spatial heterogeneity in the effect 
of macro-level and micro-level factors on stunting among children aged under five in Uganda. We 
conducted a cross-sectional analysis of 3624 Ugandan children aged under five, using data from the 
2016 Ugandan Demographic and Health Survey. Multilevel mixed-effect analysis, spatial regression 
methods and multi-scale geographically weight regression (MGWR) analysis were employed to 
examine the association between our predictors and stunting as well as to analyse spatial dependence 
and variability in the association. Approximately 28% of children were stunted. In the multilevel 
analysis, the effect of drought, diurnal temperature and livestock per km2 on stunting was modified 
by child, parent and household factors. Likewise, the contextual factors had a modifiable effect on the 
association between child’s sex, mother’s education and stunting. The results of the spatial regression 
models indicate a significant spatial error dependence in the residuals. The MGWR suggests rainfall 
and diurnal temperature had spatial varying associations with stunting. The spatial heterogeneity 
of rainfall and diurnal temperature as predictors of stunting suggest some areas in Uganda might be 
more sensitive to variability in these climatic conditions in relation to stunting than others.

It is widely acknowledged that climate change poses a significant threat to the health and wellbeing of poor and 
vulnerable populations in this century1–3. The research shows that global climate change will have a significant 
impact on food production and food security, especially in the developing world4–6. Agriculture and food pro-
duction in many developing countries, including those in sub-Saharan Africa, are dependent on local climatic 
factors7,8. The majority of individuals and households in sub-Saharan Africa depend on rain-fed agriculture for 
their sustenance and their nutritional requirement2,9. This traditional form of food production results in low 
yields and has a very low adaptive capacity to climate variabilities10–13. In view of this, many researchers and 
stakeholders suggest climate change poses a significant threat to the attainment of the sustainable development 
goal of ending hunger and all forms of malnutrition in sub-Saharan Africa14–16. Among other factors, the region’s 
susceptibility to climate variability and low agricultural productivity have been acknowledged major contributors 
to the high prevalence of persistent hunger among its population3,17,18.

Sub-Saharan Africa has the highest global prevalence of hunger with 22.8% prevalence in 2017; representing 
an increase of 2.5% in 2017 compared to 2014 (20.9%)17. Similarly, the number of undernourished people has 
increased from 195 million people in 2014 to approximately 237 million people in 201717. The burden of mal-
nutrition is significantly higher among children under 5 years of age19. Eastern African region, where Uganda 
is located, has the second highest percentage of stunted children aged under 5 (35.2%) after the Oceania region 
(38.2%)20. Nevertheless, the evidence from existing studies shows that there are significant regional or spatial 
variations in the prevalence of malnourished children in Uganda and the sub-Saharan African region2,8,21–23. 
In Uganda, the proportions of children suffering persistent malnutrition (stunting) and acute malnutrition in 
the Kampala region (national capital region), are significantly lower compared to other regions23. For instance, 
13.5% and 5.7% of children in the Kampala region suffer from persistent and acute malnutrition, respectively, 
compared to 45.0% and 31.9% of children in the Karamoja region (one of the poorest regions in the country)24.

Evidence from the literature and research on childhood malnutrition shows that the causes of childhood 
malnutrition are multifaceted, emanating from biological, social, cultural, economic, and environmental factors. 
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Childhood malnutrition in sub-Saharan Africa and many parts of the developing world is significantly associated 
with variability in rainfall and temperature8,9,16,21,25–27. Extreme rainfall and drought affect agricultural productiv-
ity, especially among subsistence farmers, contributing to food insecurity and malnutrition among children8,9. 
Childhood malnutrition is also strongly associated with poverty, ill-health and human capital28–30. Findings of 
existing studies show that children in socioeconomically disadvantaged households are more susceptible to child-
hood malnutrition31–34. Some researchers argue that variabilities in child development and malnutrition status 
among social groups and locations are more often due to socioeconomic inequalities than biological factors35. 
Likewise, childhood malnutrition is also associated with major health problems in early childhood and later life36. 
Poor nutrition among children contributes to about 45% or 3.1 million cases of child mortality30. The literature 
shows that malnourished children are more susceptible to cognitive impairment and intellectual disabilities36,37. 
Malnourished children are more likely to perform poorly in academic and psychological assessments. A study 
in Barbados found that moderate and severe childhood malnutrition significantly elevated the risk of impaired 
intelligence quotient (IQ); persons with childhood malnourishment history were nine times more likely to have 
intellectual disability37. Adults with a history of childhood malnutrition are also known to be more likely to have 
personality disorders, such as paranoid, schizoid and dependent personality disorder36.

While existing studies have examined the association between climatic factors and childhood malnutrition, 
their methodological approaches do not address the issue of spatial dependence and spatial heterogeneity in 
this association. That is, the findings of these studies assume the association between climatic factors and child-
hood malnutrition is the same or stationary across the study area. Research in other health issues has observed 
the existence of spatial autocorrelation and clustering in the association between socioeconomic, geographical 
factors, and major health outcomes38,39. Compared to traditional regression models, spatial regression models 
move beyond the naïve assumption of the association between predictors and outcome being constant across 
space. They consider the potential effect of neighbouring geographic units on the observed association (spatial 
autoregressive model) and variability in the association across geographic areas40. The knowledge from these 
spatial models is relevant for identifying policies and intervention areas to reduce the effect of climatic variability 
on health and wellbeing, especially childhood malnutrition. In this study, we examine spatial variability and 
spatial dependence in the association between individual factors, contextual factors, and childhood malnutrition 
among children under five in Uganda. Specifically, we sought to (a) examine the spatial pattern of childhood 
malnutrition in Uganda (b) determine whether childhood malnutrition is independent or non-independent 
across districts (counties) in Uganda (c) explore whether there is spatial heterogeneity in the association between 
socioeconomic characteristics, climatic factors and childhood malnutrition in Uganda.

Results
Descriptive.  Table 1 shows the descriptive statistics for the study variables. Among children aged under five 
in Uganda, 28.07% were stunted. The result shows that the mean drought episode in the country is 1.45 units 
with an average aridity index of 33.13. The mean annual rainfall for the years 2010 and 2015 was 1359.20 mm 
with an average diurnal temperature of 12.43 and a mean annual temperature of 23.40. The average head of live-
stock was 82.19 per km2. There was almost equal (50:50) sample of female and male children and had an average 
weight at birth (52.71%). The majority of parents had only a primary level of education; 62.35% for mothers 
and 54.29% for fathers. The percentage of fathers with secondary and post-secondary education (38.75%) was 
relatively higher than that of mothers (27.32%) The majority of mothers were employed in the agriculture sector 
(46.97%) while the majority of fathers were employed in service and manual labour sector (39.70%). A higher 
proportion of mothers were unemployed (6.96%) compared to fathers (3.43). The majority of households were 
rural (79.80%) and 43.26% of children lived in the poorest and poorer households. Table 2, shows the summary 
statistics of the study variables for our spatial models. The mean district percentage of stunted children was 
27.95%. The district average of uneducated and unemployed mothers were 13.34% and 15.98%, respectively. The 
district average for uneducated and unemployed fathers were 9.43% and 3.53%, respectively. 

Figure 1 displays the percentage distribution of stunted children, uneducated mothers, unemployed moth-
ers, and poor households in Uganda by districts. The result for stunting suggests the district distribution of 
stunted children appears random. Out of the 112 districts in Uganda, 51 districts had a stunting rate above the 
national average of 28.07% as reported in Table 1. The Bududa district located in eastern Uganda had the high-
est percentage of stunted children—82.82%. The result also shows that the percentage of unemployed mothers 
is randomly distributed with no distinct clustering pattern. The percentage distribution of uneducated moth-
ers shows distinct clustering in the north-eastern corner of the country. Amudat district in northern Uganda 
had the highest percentage of uneducated mothers (95.30%). The distribution of poor households also shows 
clustering in the northern and eastern parts of the country. In the Northern and Eastern regions of the country, 
the majority of districts had 26% or more households in poor wealth quintile; compared to the Western and 
Central part where the range of poor households was between 0 and 26%. A total of 48 districts had a higher 
percentage of uneducated mothers compared to the average reported in Table 1 (10.34%) and 61 districts had 
a higher percentage of poor households compared to the average proportion of poorest and poorer households 
reported in Table 1 (43.26%).

Multilevel mixed‑effect analysis.  Table 3 displays the result of the multilevel-mixed effect analysis. The 
bivariate model shows that for climatic factors a degree Celsius increase in the mean annual temperature was 
significantly associated with a decreased likelihood of stunting among children under age five (expβ = 0.939, 
p < 0.05). A unit increase in the mean head of livestock per km2 reduces the likelihood of stunting among children 
(expβ = 0.999, p < 0.05). The child’s sex and weight at birth were significantly associated with stunting. Female 
children were less likely to be stunted (expβ = 0.853, p < 0.05); children whose weight at birth was smaller than 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:20019  | https://doi.org/10.1038/s41598-020-76856-y

www.nature.com/scientificreports/

Table 1.   Descriptive summary of study variables (n = 3624). a Mean, standard errors in parenthesis.

Frequency (percentage)

Malnutrition indicators

Stunting

 Yes 1020 (28.15)

 No 2604 (71.85)

Child characteristics

Sex of child

 Male 1800 (49.67)

 Female 1824 (50.33)

Weight at birth

 Average 1921 (53.01)

 Very large 296 (8.17)

 Larger than average 704 (19.43)

 Smaller than average 514 (14.18)

 Very small 189 (5.22)

Parental characteristics

Level of education—Mother

No formal education 448 (12.36)

Primary education 2326 (64.18)

Secondary education 661 (18.24)

Post-secondary education 189 (5.22)

Sector of employment—Mother

 Unemployed 623 (17.19)

 Agriculture 1711 (47.21)

 Service and manual 743 (20.50)

 Professional 547 (15.09)

Level of education—father

 No formal education 311 (8.58)

 Primary education 2012 (55.52)

 Secondary education 921 (25.41)

 Post-secondary education 380 (10.49)

Sector of employment—father

 Unemployed 146 (4.03)

 Agriculture 1334 (36.81)

 Service and manual 1450 (40.01)

 Professional 694 (19.15)

Household characteristics

Income index

 Poorest 980 (27.04)

 Poorer 775 (21.39)

 Middle 698 (19.26)

 Richer 635 (17.52)

 Richest 536 (14.79)

Household type

 Urban 594 (16.39)

 Rural 3030 (83.61)

Environmental factors

Drought episode 1.45 (0.03)a

 Mean aridity 2015 and 2010 33.13 (0.10)a

 Mean rainfall 2015 and 2010 (mm) 1359.20 (4.05)a

 Mean diurnal temperature 2015 and 2010 (°C) 12.43 (0.01)a

 Mean annual temperature 2015 and 2010 (°C) 23.40 (0.03)a

 Mean heads of livestock per km2 82.19 (1.72)a
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average and very small were more likely to be stunted. With regard to parental characteristics, both parents’ level 
of education and mother’s type of employment were significantly associated with stunting. Children of highly 
educated parents and children whose mothers worked in a professional occupation were less likely to be stunted. 
Children in richer and richest households were less likely to be stunted; while children in rural households were 
more likely to be stunted compared to those in urban areas (expβ = 1.403, p < 0.01).

The first multivariate model (Model 1) considered the contextual factors only. The result indicates mean 
aridity, mean annual rainfall, and mean annual temperature were significantly associated with stunting among 
children under age five. A unit increase in the aridity index (or increase in wetness) reduced the likelihood of 
stunting among children (expβ = 0.931, p < 0.01). A degree Celsius increase in the mean annual temperature 
reduces the likelihood of stunting among children (expβ = 0.685, p < 0.001). However, a millimetre increase in 
mean annual rainfall increases the likelihood of stunting among children under age five. The intra-class cor-
relation (ICC) estimates indicate that differences in neighbourhood account ~ 9% of the variability in stunting. 
Model 2 considers child, parents and household factors only. The result shows that female children, children 
whose mothers have secondary education and above, and children who live in the richest households were less 
likely to be stunted. Similar to the bivariate model, children who were smaller than average and very small at birth 
were more likely to be stunted compared to those who were average at birth. Differences in neighbourhoods and 
districts accounted for ~ 13% and ~ 8%, respectively, of the variability in stunting. In the final multivariate model 
(Model 3), all contextual factors became statistically significant predictors of stunting among children aged under 
five. A unit increase in drought episode mean annual rainfall and mean heads of livestock per km2 increased the 
likelihood of stunting among children aged under five. On the other hand, a unit increase in mean aridity, mean 
diurnal temperature and mean annual temperature reduced the likelihood of stunting among children aged under 
five. Weight at birth, the mother’s type of occupation and household wealth index were significantly associated 
with stunting. Children whose weight at birth was smaller than average and very small were more likely to be 
stunted. Children whose mothers worked in the professional sector were less likely to be stunted compared to 
those with unemployed mothers (expβ = 0.599, p < 0.05). Children living in the richer and the richest households 
were also less likely to be stunted compared to those living in the poorest households. The ICC estimates from 
the final model show that ~ 10% of the variability in stunting is attributable to differences in neighbourhoods.

Spatial regression models.  Table 4 shows the result of the spatial autoregressive models. The OLS model 
shows that the percentage of uneducated mothers and the mean annual temperature are significantly associated 
with stunting among children aged under five. A percentage increase in the proportion of mothers with no for-
mal education increases the percentage of stunted children by 0.343 (p < 0.05). A degree Celsius increase in the 
mean annual temperature reduces the percentage of stunted children by 3.056 (p < 0.01). The result of the Moran 
I test for the OLS means we can reject the hypothesis that the residuals from the model are not independent and 
identically distributed; that is, it indicates autocorrelation is present in the model. The spatial error model (SEM) 
similar to the OLS model shows that the percentage of uneducated mothers and district mean annual tempera-
ture are significantly associated with district percentage of stunted children. The spatial effect (λ = 0.497, p < 0.05) 
and the Wald test for the spatial term (p < 0.05) suggest the presence of significant spatial error dependence in the 
residuals. Unlike the OLS and SEM models, the spatial lag model (SAL) and spatial durbin error (SDEM) mod-
els’ results are decomposed into direct effect (or within unit effect), indirect effect (across units effect or effect of 
neighbouring units), and total effect (the sum of the within and across units effects). In SAL and SDEM models, 
when a predictor is significantly associated with an outcome and the unit and across unit effects are in the same 
direction, a spillover effect is said to have occurred41. The spatial effect for the SAL model was not statistically 
significant and there was no spillover effect in the model. The SDEM model (Table S1) indicates that the spatial 
effects in the model are statistically significant for mean annual rainfall and the spatial error. Similar to the SAL 
model there were no spillover effects in the SDEM model. The model diagnostics for the spatial models show an 
improvement in the SDEM model compared to the OLS, SEM, and SAL models. The AIC value for the SDEM 

Table 2.   Descriptive of summary of study variables for the spatial models (n = 112 districts).

Variables Mean Standard error 95% Confidence interval Minimum Maximum

Stunting (%) 27.95 1.33 25.32–30.58 0 82.82

Uneducated mothers (%) 13.34 1.75 9.87–16.82 0 95.3

Unemployed mothers (%) 15.98 1.59 12.84–19.13 0 66.72

Uneducated fathers (%) 9.43 1.71 6.03–12.83 0 98.9

Unemployed fathers (%) 3.53 0.69 2.17–4.89 0 43.27

Poorest and poorer households (%) 49.49 2.75 44.03–54.95 0 100

Mean heads of livestocks per km2 56.12 4.63 46.94–65.30 1.48 380.64

Mean aridity 2015 and 2010 32.08 0.51 31.07–33.09 15.53 47.42

Mean rainfall 2015 and 2010 (mm) 1344.41 22.14 1300.53–1388.28 724.91 1913.33

Mean diurnal temperature 2015 and 2010 (°C) 12.51 0.07 12.36–12.65 10.76 14.2

Mean annual temperature 2015 and 2010 (°C) 23.43 0.17 23.11–23.77 17.03 26.53
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model was the lowest (AIC = 903.854) and the model accounted for ~ 33% of the variability in the percentage of 
stunted children (Pseudo R2 = 0.326).

Multi‑scale geographically weighted regression.  Table 5 displays the summary statistics of estimated 
coefficients of the local terms (MGWR model), as well as the optimal bandwidth for each predictor and the result 
of the Monte Carlo test of non-stationarity. The spatial heterogeneity test (Monte Carlo test of non-stationarity) 
shows a statistically significant result for mean annual rainfall and mean diurnal temperature (p < 0.05), thus 

Figure 1.   Distribution of stunting, maternal education, maternal unemployment and poor households by 
districts. Generated with ArcMap 10.6 by ESRI (https​://deskt​op.arcgi​s.com/en/).

https://desktop.arcgis.com/en/
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Bivariate model Model 1 Model 2 Model 3

Environmental factors

Drought episode 1.056 (0.059) 1.160 (0.142) 1.272 (0.141)*

Mean aridity 2015 and 2010 1.008 (0.010) 0.931 (0.022)** 0.948 (0.026)*

Mean rainfall 2015 and 2010 (mm) 0.999 (0.001) 1.001 (0.001)** 1.001 (0.001)**

Mean diurnal temperature 2015 and 2010 (°C) 0.964 (0.068) 0.833 (0.102) 0.787 (0.086)*

Mean annual temperature 2015 and 2010 (°C) 0.939 (0.026)* 0.685 (0.034)*** 0.687 (0.040)***

Mean heads of livestock per km2 0.999 (0.001)* 0.999 (0.001) 1.003 (0.001)*

Child characteristics

Sex of child

 Male (ref)

 Female 0.853 (0.066)* 0.811 (0.065)** 0.825 (0.082)

Weight at birth

 Average (ref)

 Very large 0.753 (0.120) 0.747 (0.114) 0.927 (0.151)

 Larger than average 0.797 (0.110) 0.767 (0.104) 0.735 (0.138)

 Smaller than average 1.293 (0.146)* 1.317 (0.151)* 1.608 (0.246)**

 Very small 1.758 (0.293)*** 1.859 (0.311)*** 1.961 (0.505)**

Parental characteristics

Level of education—Mother

 No formal education (ref)

 Primary education 0.885 (0.108) 0.879 (0.117) 0.849 (0.135)

 Secondary education 0.603 (0.085)*** 0.714 (0.114)* 0.657 (0.165)

 Post-secondary education 0.183 (0.049)*** 0.335 (0.104)*** 0.673 (0.286)

Sector of employment—Mother

 Unemployed (ref)

 Agriculture 1.019 (0.116) 0.833 (0.099) 0.835 (0.166)

 Service and manual 1.064 (0.139) 0.972 (0.135) 0.851 (0.165)

 Professional 0.552 (0.097)*** 0.711 (0.104) 0.599 (0.155)*

Level of education—father

 No formal education (ref)

 Primary education 1.066 (0.191) 1.158 (0.224) 1.055 (0.298)

 Secondary education 0.846 (0.169) 1.081 (0.241) 1.126 (0.335)

 Post-secondary education 0.430 (0.118)** 0.852 (0.243) 0.887 (0.350)

Sector of employment—father

 Unemployed (ref)

 Agriculture 1.400 (0.321) 1.538 (0.385) 1.596 (0.528)

 Service and manual 1.275 (0.297) 1.536 (0.386) 1.709 (0.539)

 Professional 0.880 (0.229) 1.366 (0.379) 1.345 (0.565)

Household characteristics

Income index

 Poorest (ref)

 Poorer 0.887 (0.109) 0.930 (0.116) 0.837 (0.136)

 Middle 0.834 (0.097) 0.874 (0.106) 0.811 (0.132)

 Richer 0.678 (0.087)** 0.789 (0.109) 0.636 (0.109)**

 Richest 0.318 (0.057)*** 0.455 (0.118)** 0.440 (0.123)**

Household type

 Urban (ref)

 Rural 1.403 (0.167)** 0.899 (0.131) 1.256 (0.216)

Random model

Variance—districts 1.04e−38 (1.81e−37) 0.173 (0.056) 1.12e−34 (6.30e−34)

Variance—PSU 0.165 (0.080) 0.262 (0.078) 0.179 (0.113)

ICC—districts 5.75e−39 0.083 6.14e−35

ICC—PSU 0.091 0.126 0.098

Model diagnostics

AIC 1642.347 4077.509 1609.684

Wald Chi2 64.95*** 244.59*** 404.99***

Table 3.   Multilevel mixed-effect analysis of determinants of stunting among children aged under five. Robust 
standard error in parenthesis; ***p < 0.001; **p < 0.01; *p < 0.05.
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suggesting spatial variability in the two variables. The model diagnostics show that the MGWR model improved 
significantly compared to the OLS model and the global spatial regression model. The MGWR model had the 
smallest AIC value (295.528) and the highest R2 value (0.462)—that is, the MGWR model explained ~ 46% of the 
variability in stunting rate among children aged under five. This indicates for our spatial models, MGWR is sta-

Table 4.   Spatial regression models for the percentage of stunted children by districts. Standard error in 
parenthesis; ***p < 0.001; **p < 0.01; *p < 0.05.

Predictor variables OLS model SEM model SAL model Direct Indirect Total

Uneducated mothers 
(%) 0.343 (0.140)* 0.347 (0.129)** 0.330 (0.137)* 0.330 (0.137)* − 0.019 (0.041) 0.311 (0.144)*

Unemployed mothers 
(%) 0.073 (0.087) 0.055 (0.081) 0.075 (0.083) 0.075 (0.083) − 0.004 (0.011) 0.071 (0.078)

Uneducated fathers 
(%) − 0.241 (0.136) − 0.229 (0.129) − 0.233 (0.131) − 0.233 (0.131) 0.014 (0.030) − 0.219 (0.131)

Unemployed fathers 
(%) 0.139 (0.239) 0.156 (0.226) 0.147 (0.229) 0.148 (0.230) − 0.009 (0.024) 0.139 (0.215)

Poorest and poorer 
households (%) 0.106 (0.069) 0.118 (0.066) 0.107 (0.066) 0.107 (0.066) − 0.006 (0.014) 0.101 (0.063)

Mean heads of live-
stock per km2 0.052 (0.031) 0.047 (0.030) 0.053 (0.030) 0.053 (0.030) − 0.003 (0.007) 0.050 (0.029)

Mean aridity 2015 
and 2010 − 0.346 (0.465) − 0.472 (0.485) − 0.351 (0.444) − 0.351 (0.444) 0.021 (0.052) − 0.330 (0.419)

Mean rainfall 2015 
and 2010 (mm) 0.008 (0.008) 0.014 (0.008) 0.007 (0.008) 0.007 (0.008) − 0.001 (0.001) 0.007 (0.008)

Mean diurnal 
temperature 2015 and 
2010 (°C)

− 4.324 (2.506) − 4.459 (2.719) − 4.407 (2.402) − 4.410 (2.405) 0.259 (0.590) − 4.151 (2.285)

Mean annual tem-
perature 2015 and 
2010 (°C)

− 3.056 (1.167)** − 3.017 (1.240)* − 3.083 (1.116)** − 3.086 (1.118)** 0.181 (0.402) − 2.904 (1.098)**

Spatial effects

Spatial error—λ 0.497 (0.170)*

Spatial lag—ρ − 0.070 (0.160)

Model diagnostics

Wald test for spatial 
term 5.83* 0.89

Adjusted R-squared 0.111 0.151 0.181

AIC 907.074 905.321 910.199

Moran I 4.130*

Table 5.   Summary of the MGWR model with the optimal bandwidth and the Monte Carlo non-stationarity 
test result for the predictors. p values < 0.05 in bold.

Predictor variables Mean (STD) Minimum (maximum) Median Bandwidth Non-stationarity (p values)

Uneducated mothers (%) 0.362 (0.115) 0.172 (0.488) 0.423 110 0.193

Unemployed mothers (%) 0.118 (0.059) 0.052 (0.216) 0.091 110 0.377

Uneducated fathers (%) − 0.224 (0.051) − 0.334 (− 0.161) − 0.209 110 0.209

Unemployed fathers (%) − 0.033 (0.024) − 0.075 (0.022) − 0.044 110 0.677

Poorest and poorer households (%) 0.386 (0.025) 0.349 (0.439) 0.388 110 0.750

Mean heads of Livestocks per km2 0.119 (0.010) 0.104 (0.152) 0.118 110 0.968

Mean aridity 2015 & 2010 − 0.168 (0.069) − 0.267 (− 0.020) − 0.182 110 0.080

Mean rainfall 2015 & 2010 (mm) 0.394 (0.312) − 0.003 (0.893) 0.328 44 0.033

Mean diurnal temperature 2015 & 
2010 (°C) − 0.490 (0.261) − 0.751 (0.183) − 0.635 56 0.018

Mean annual temperature 2015 & 
2010 (°C) − 0.528 (0.053) − 0.653 (− 0.453) − 0.530 110 0.649

Model diagnostics

AIC 295.528

AICc 308.777

R-squared 0.462

Adjusted R-squared 0.325
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tistically preferable compared to the SEM, SAL, and SDEM models. Figure 2 shows the variation of the estimates 
for the local effects of mean annual rainfall and mean diurnal temperatures on the rate of stunting among chil-
dren. With the exception of Kole district, an increase in mean rainfall was associated with an increased rate of 
stunting at the district level (Fig. 2a). The association was only statistically significant (p < 0.05) for some districts 
in the central and eastern parts of Uganda (Fig. 2c). The visualization of the local estimates for mean diurnal 
temperature showed mixed patterns. For the majority of the districts in Uganda, an increase in the district mean 
diurnal temperature was associated with a reduction in the rate of district-level stunting (Fig. 2b). However, in 
some districts in the northern part of the country (shown in red in Fig. 2b) increase in district mean diurnal 
temperature increased the rate of stunting among children. Figure 2d indicates this association was statistically 
significant (p < 0.05) for the districts in the southern parts of the country and a few districts in the northern-
western and eastern parts of the country. 

Discussion
Geographic concepts of spatial dependence and spatial heterogeneity are important in enhancing our understand-
ing of the relationship between socioeconomic, climatic factors and childhood malnutrition. These concepts are 
based on the tenet that the interaction of socioeconomic and broader contextual factors with childhood malnutri-
tion is not static across space. Likewise, socioeconomic and place-based vulnerabilities and their effect on health 
outcomes vary geographically, hence the need to explore the spatial relationships between individual factors 
and health outcomes, as well as that between broader contextual factors and health outcomes. The analytical 
approaches employed in this study enables us to address this crucial issue of spatial relationships or associations 
between socioeconomic, climatic factors and childhood malnutrition. The descriptive maps show districts in the 
northern and eastern parts of the country tend to be socioeconomically disadvantaged compared to the rest of 
the country. This is evident in the descriptive maps (Fig. 1) which show clustering of the district proportion of 
poor households the northern and eastern regions of Uganda; likewise, there is clustering of the district propor-
tion of mothers with no formal education in the north-eastern part of Uganda. These regions have experienced 
decades armed conflicts, including the Lord’s Resistance Army insurgency, contributing to the vulnerabilities of 
women and children in these parts of Uganda42,43.

First, we employed multilevel modelling to account for neighbourhood and district variation (or contextual 
effects) in childhood malnutrition which cannot be account for in the normal regression approach44. Next, we 
used spatial regression models to examine spatial dependency in stunting and spatial heterogeneity in the effect 
of socioeconomic and climatic factors on the rate of stunting among children aged under five. The results of 
the multilevel analysis confirm significant between neighbourhood variations in stunting; and between district 
variation in stunting when we consider child, parents and household factors only. The spatial regression models 
suggest the error terms are correlated across districts, that is, neighbouring districts’ stunting influence a district’s 
rate of stunting due to unmeasured factors that are correlated across districts or systematic measurement error. 
The MGWR model also confirms spatial variation (heterogeneity) in the association of mean annual rainfall and 
mean diurnal temperature with the district rate of stunted children.

Consistent with the findings from existing studies, our multilevel model shows that climatic factors and 
other contextual factors are significantly associated with stunting among children. However, the direction of this 
association differs across the context of the study. In arid and semi-arid countries, results show that an increase 
in annual rainfall or precipitation reduces the likelihood of stunting among children aged under five8,9,21,26,45. 
An increase in the mean annual rainfall in arid and semi-arid countries sustains and enhances healthy food 
production, given the environmental and climatic conditions of these countries8,21,26,45. In Somalia, Kinyoki 
et al. (2016) observed that a mm increase in annual rainfall reduced the likelihood of children experiencing 
stunting by 12%. In contrast, Uganda is a tropical country with two distinct rainfall seasons and a mean annual 
rainfall of 1200 mm46. An excessive amount of rainfall has the potential to negatively affect agricultural output 
through flooding, potentially creating food insecurity in many households that depend on subsistence agri-
culture for nutritional needs3,17,47. The country’s humid condition means an optimal temperature or period of 
dryness is necessary for ensuring the harvesting of agricultural produce. Our finding shows that an increase in 
mean annual rainfall increases the likelihood of stunting; while an increase in mean annual temperature and 
mean diurnal temperature reduces the likelihood of stunting among children in the country. However, exces-
sive dryness (drought and aridity) may also affect food production leading to food insecurity and resulting in 
cases of malnutrition among children. Our study also reveals that an increase in the mean head of livestock per 
km2 increases the likelihood of stunting. We argue that high-density livestock may potentially be indicative of 
commercial animal husbandry which does not necessarily translate into direct household consumption. Also, 
households in areas with a high density of livestock may have to compete with this commercial production 
activity for available arable lands48.

We also observed that child, parent and household characteristics are significantly associated with stunting. 
Children from poor and socioeconomic disadvantaged households are more likely to be stunted. The result shows 
children with below-average birth weight are also more likely to be stunted. These findings support evidence 
from existing studies. Research on childhood malnutrition in the sub-Saharan African sub-region shows that low 
birth weight, male sex, low paternal education and poor households are consistent risk factors for stunting and 
other indicators of malnutrition among children aged under five31,32,34. In Ghana, Novignon et al. (2015) observed 
that maternal primary education and secondary education account for 13 and 11%, respectively, of inequality 
in stunting among children. The findings of this study suggest that child, parents and household characteristics 
have a modifying effect on the association between some climatic factors and stunting. In the final multivari-
ate multilevel analysis, drought episode and mean diurnal temperature, as well as, mean head of livestock per 
km2 became statistically significant after controlling for child, parent and household characteristics. Likewise, 
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Figure 2.   Multiscale geographically weighted regression local estimates for (a) mean annual rainfall, (b) 
mean diurnal temperature, (c) mean annual rainfall at p < 0.05 (statistically significant), and (d) mean diurnal 
temperature at p < 0.05 (statistically significant). Generated with ArcMap 10.6 by ESRI (https​://deskt​op.arcgi​
s.com/en/).

https://desktop.arcgis.com/en/
https://desktop.arcgis.com/en/
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the statistical significance of some child, parent and household characteristics disappeared after controlling for 
contextual factors, including climatic conditions, in the final multivariate multilevel model.

The global multilevel models show mixed results for the association between climatic factors and stunting 
among children. The results of spatial regression models (SEM and SDEM) indicate that childhood malnutrition 
in a given district in Uganda is likely to be influenced by the proportion of unemployed mothers and the average 
rainfall in the neighbouring districts as well as other contextual factors not accounted for in our model. Women 
in neighbouring districts may share similar socioeconomic characteristics thus socioeconomic vulnerabilities 
of women in neighbouring districts may reflect the conditions of women in a district under consideration. As 
indicated earlier, women or mothers’ socioeconomic vulnerabilities including unemployment increases the risk 
of childhood malnutrition among children aged under 5 years in Uganda31. The MGWR model (with its spatial 
variation ability) provides a contextual insight into the observed associations between the contextual factors and 
childhood malnutrition. First, the MGWR model shows that mean annual rainfall is significantly associated with 
stunting in districts in central and eastern parts of Uganda. The magnitude and the direction of the association 
suggest in these districts an increase in mean annual rainfall increases the percentage of stunted children aged 
under five. A plausible explanation for the association is the proximity of these districts to Lake Victoria. Districts 
in the vicinity of Lake Victoria receive the highest amount of annual rainfall49,50; thus, an excessive amount of 
rainfall could disrupt agricultural activities and food production for individuals and households in these districts. 
It is also possible that the local topography of these districts makes food production sensitive to rainfall above the 
mean annual total. This also could account for the spatial lagged effect of rainfall observed in the SDEM model 
(Table S1). Trade between neighbouring districts means, the effect of rainfall on agricultural productivity in a 
given district can equally affect food security in neighbouring districts thus contributing to childhood malnutri-
tion in these neighbouring districts. On the contrary, the MGWR estimate magnitude and direction show that 
an increase in mean diurnal temperature in districts in the southern, central and eastern parts of the country, 
as well as few districts in the north reduces the percentage of stunting among children. Given the high amount 
of rainfall in these parts, an optimal variation in temperature (including diurnal variation) may be necessary to 
ensure crop survival and good yields51,52.

The findings of our study ought to be considered given its limitations. Our study did not consider important 
environmental factors, including soil type, local vegetation and food production systems, which could potentially 
influence food insecurity and childhood malnutrition. Likewise, the list of the child, parent and household char-
acteristics used in this study is not comprehensive. In our analysis, we could not consider factors such as feeding 
practices, and sociocultural practices of the local communities which are known to be associated with stunting 
and other malnutrition indicators. The UDHS data used in this study comes from a cross-sectional survey hence 
we cannot draw causal inference from our findings. Another major limitation of this study is the use of self-
reported data, such as the use of mother recall for child’s birth weight in the absence of a written record. This 
data is subject to recall bias as respondents can overestimate or underestimate the actual birth weight. Estimates 
from the aggregated data may not be true representations of district level childhood malnutrition and socioeco-
nomic indicators, especially for districts where fewer clusters were selected for the UDHS survey. Although we 
explored spatial variation in this study, our analysis did not consider temporal variation. Future studies could 
potentially explore spatial and temporal variation in childhood malnutrition to provide a longitudinal dimension 
of its relationship with environmental, climatic, child, parent and household factors.

Conclusion
Notwithstanding the limitations of this study, the findings have vital implications for future research and policy. 
Food production and household food security in many sub-Saharan African countries are at risk due to sensitiv-
ity to climatic conditions. Many households in Uganda, like most sub-Saharan African countries, are dependent 
on subsistence agriculture for their sustenance. Thus, excessive wetness or dryness due to climatic change risk 
can affect household agricultural productivity and food security; exacerbating malnutrition among vulnerable 
populations in this part of the world, particularly children. Without adequate food and income from agricultural 
production, children are more likely to be exposed to prolonged nutritional deficiencies contributing to their risk 
of stunting. The findings also suggest improving maternal and household socioeconomic conditions minimise 
the likelihood of stunting among children under 5 years in Uganda. Thus, there is a need for policymakers and 
stakeholder to direct resources to improve women’s socioeconomic status, household socioeconomic conditions 
and to mitigate the effect of climate change on agricultural productivity in the country. The novel use of MGWR 
methodology in this study shows that this association is not static across Uganda. It shows that the effect of 
mean annual rainfall and mean diurnal temperature on stunting may be dependent on the local context. The 
results show which areas might be sensitive to variability in these climatic conditions in relation to childhood 
malnutrition. This information is necessary for designing intervention measures and frameworks for addressing 
the adverse effect of climate change on childhood malnutrition taking into account the local context.

Data and methods
In this study, we used the 2016 Uganda Demographic and Health Survey (UDHS). The UDHS is a nationally 
representative cross-sectional survey of women aged 14–49 years and men aged 15 to 54. The primary focus of 
the UDHS is to generate reliable information on fertility, family planning, infant and child mortality, maternal 
and child health, and nutrition. The 2016 GDHS used an update frame from the 2014 Uganda National Popula-
tion and Housing Census (NPHC) as its sample frame53. The survey followed a two-stage sampling design. The 
first stage of sampling entailed choosing enumerations areas (EAs) from the 2014 NPHC delineated EAs as its 
sample point or primary sampling units (PSU). In Uganda, an EA—similar to a census tract in other parts of the 
world—is a small geographic area that covers an average of 130 households. A total of 697 PSUs were randomly 
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selected from a complete list of 78,462 PSU used in the 2014 population and housing survey. 162 EAs were 
selected from urban areas and 535 EAs selected from rural areas. The second stage of sampling involved the 
systematic selection of 20,791 households from the selected EAs (hereinafter called PSUs) or sampling clusters. 
The UDHS datasets include geographic data that contains point data with the GPS coordinates of sampled PSUs. 
These coordinates can be linked with the UDHS survey datasets, including the child recode dataset which con-
tains information on birth history, health and anthropometric records of children born in the last 5 years (prior 
to the survey) to all women interviewed. Detailed information on the sampling and methods used in the 2014 
GDHS is available in the final report.

The UDHS data was linked with the 2014 Uganda district GIS shapefile and all 697 PSUs were matched to their 
respective districts. The UDHS point data has information on the districts were the PSUs (clusters) were selected 
labelled “ADM1DHS” the attribute table; this information matches the PSUs to 112 districts (at the time of the 
2014 NPHC). In this study, we overlaid the DHS point data shapefile over a 2014 district shapefile (containing 
112 districts) to match the points to their respective districts using the Join Data function in ArcMap. With this 
function, one can link spatial datasets (in our case the DHS point data and the district shapefile) based on their 
spatial locations. The output file will contain information from both point data (PSUS) and the district shapefile 
including the longitudinal and latitudinal information of the districts. The procedure for linking the UDHS 
survey data with the output containing district data is described in details elsewhere54. UDHS survey protocol 
was reviewed and approved by the ICF Institutional Review Board (IRB) and an IRB in the host country. ICF 
IRB was to ensure that the survey complies with the U.S. Department of Health and Human Services regulations 
for the protection of human subjects (45 CFR 46), while the host country IRB ensures that the survey complies 
with laws and norms of the nation.

Measures.  Outcomes.  Childhood malnutrition in this study was measured by stunting (height-for-age). In 
the DHS, height is measured with a Shorr Board measuring; children under 24 months were lying down while 
older children were measured standing53. Stunting, as an indicator of malnutrition, reflects a linear growth of a 
child and is influenced by long period deficiencies in calories and protein; that is, it reflects cumulated or long 
period malnutrition in children55. In line with the WHO convention, children in the UHDS sample were classi-
fied as stunting if their height-for-age z scores are below minus two standard deviations (< -2 SD). This outcome 
was also aggregated by districts for our spatial analysis. That is, the outcome for the spatial analysis was the 
percentage of children under age five that experienced stunting by districts.

Contextual factors.  The contextual data also comes from the UDHS datasets. The UDHS datasets, like other 
demographic and health surveys supported by the U.S. Agency for International Development (USAID) and 
implemented by ICF, include geospatial covariates that contain environmental, climatic and geographic infor-
mation on DHS clusters56. These geographic covariates can easily be linked with other datasets using the cluster 
codes. A detailed description of the data extraction processing can be found elsewhere56. In this study, the key 
contextual factors were: the average number of drought episodes, aridity index, average annual rainfall (in mm), 
average diurnal temperature (in °C), average annual temperature (in °C), and average heads of livestock (cattle, 
chickens, ducks, goats, pigs and sheep) per kilometres square. Drought episodes were categorized as 1(low) and 
10(high). Aridity index ranging from 0(most arid) to 300(most wet) was defined as the ratio of annual precipi-
tation to annual potential evapotranspiration56. Except for drought episodes, the mean values of all contextual 
factors were computed as the average for the years 2010 and 2015. These variables were not a continuous yearly 
measurement but measurement for discrete periods. For instance, the mean annual temperature variable in 
the UDHS geographic covariate datasets covers 2000, 2005, 2010, and 2015. Drought episode in the DHS was 
constructed based on precipitation data from 1985, 1990, 1995, 2000, 2005, 2010, and 2015. These variables were 
also aggregated by districts for the spatial analysis computed as the mean value of all sampled clusters or EAs in 
the district.

Child, parental and household factors.  Based on the evidence from existing research, we included child, paren-
tal and household characteristics as predictors of childhood malnutrition. We employed sex and weight at birth 
as measures of child characteristics. Birth weight was obtained from either written record or mother’s recall (in 
the absence of a written record). The UDHS measure on a child’s weight at birth was an ordinal variable with the 
following response categories: very large, larger than average, average, and smaller than average. Parent’s socio-
economic characteristics were measured by the highest level of education and sector (or type of employment). In 
the UDHS, household wealth was constructed using data on household asset ownership. The respondents were 
categorized into five groups (or wealth index): richest, richer, middle, poorer, and poorest. The location of the 
household, urban or rural, was also included as a measure of household characteristics. Similar to the outcome 
and contextual factors, we computed the percentage of mothers with no formal education and fathers with no 
formal education by districts as predictors for the spatial analysis. The list of socioeconomic predictors for the 
spatial analysis also includes the percentage of poorest and poorer households by districts—defined in the spatial 
analysis as poor households.

Analysis.  We adopted three analytical techniques to understand the nature of the association between 
socioeconomic characteristics, climatic factors, and childhood malnutrition. First, we adopted a multilevel 
mixed-effect analysis to accommodate the hierarchical or stratified nature of the UDHS data. Using multilevel 
mixed-effect analysis, we can assess the effect of context or place variations via an assessment of the variance 
(or standard deviations) of the model parameters57,58. An initial assessment of our outcome variables indicated 
it was asymmetrically distributed hence we specified the complementary log–log (cloglog) link function. The 
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complementary log–log link function relaxes the symmetrical assumption of logistic regression and it is ideal 
for events or outcomes with a very large or very small probability (incidence) of occurrence59. Using the logis-
tic link function for such outcomes may produce biased parameter estimates. Three-level multilevel mixed-
effect complementary log–log models were built with children nested in neighbourhoods (defined PSUs) and 
neighbourhoods nested in districts. First, we fitted a bivariate complementary log–log model to examine the 
association between indicators of childhood malnutrition and each of predictor variable included in our study. 
This was followed by three multivariate model multilevel mixed-effect complementary log–log models. Model 
1 examined the association between contextual factors (including climatic factors) and childhood malnutrition. 
The second model (Model 2) focused on the association between child, parental, and household characteristics 
while the final model (Model 3) is a full model that includes both contextual variables and child, parental, and 
household variables.

The second analytical approach entailed fitting spatial regression models to assess spatial dependency. Three 
main spatial regression methods were employed to assess the relationship between district-level factors and child 
malnutrition, noting the role of contextual factors in the relationship may vary differently. Before fitting these 
models, we employed Moran I statistics to assess whether there is autocorrelation in the ordinary least square 
regression (OLS) model. A statistically significant result indicates that ignoring spatially lagged dependent or 
spatially lagged covariates or spatial error dependence in the OLS model will bias the estimates (parameter and 
standard error estimates) for the covariates in the model40. The first spatial regression model confined the spatial 
autocorrelation to the error term—that is, a spatial error model (SEM). In SEM model, we argue the childhood 
malnutrition is dependent on observed local characteristics and the error terms are correlated across space—that 
is, accounting for excluded spatial effects (effects not examined in the model) that could explain the observed 
spatial autocorrelation in the residuals41,60. The second model—spatial lag model (SAL)—confined the spatial 
autocorrelation to the outcome in neighbouring districts or spatial lags of the outcome variable. SAL is based 
on the assumption that childhood malnutrition in a given district is influenced by childhood malnutrition in 
neighbouring districts. It does not make any assumptions on the nature of the spatial relationship among con-
textual factors considered in the model and draws heavily on the spatial diffusion model or process39,40. In the 
final model (SDEM), we extend the spatial lag model be confining the spatial autocorrelation to spatial lag in 
the outcome and all predictors, and the error term61,62. That is, SDEM is based on the assumption that childhood 
malnutrition in a given district can be influenced by childhood malnutrition in neighbouring districts, contextual 
characteristics of neighbouring districts and other spatial effects not accounted for in the models.

A multi-scale geographically weighted regression (MGWR) was employed in the final analytical approach 
to assess spatial heterogeneity in the association between socioeconomic characteristics, climatic factors, and 
childhood malnutrition. Rather than providing an average global estimate for the relationship or association in 
the model as traditional regression (such as OLS) and global spatial regression (such as SEM, SAL and SDEM) 
models do, MGWR allows the model parameters to vary across the geographic units63. That is, the relationship 
between the predictor variables and childhood malnutrition is shown for each unit or district in the study. 
MGWR is an improvement of prior local statistical models—geographically weighted regression (GWR) and 
semi-parametric geographically weighted regression (SGWR). In both GWR and SGWR, the local association 
between an outcome and predictors are constrained to vary at the same spatial scale. These prior models were 
based on the assumption that the association(s) is influenced by processes operating at the same spatial scale63. 
The GWR model can be described as:

where (μi, vi) represent the coordinates for location i, xij is the jth predictor variable, βj(µi,vi) is the jth coefficient, 
εi is the error term and yi is the outcome variable. The SGWR model permits the existence of both global and 
local associations; the model is expressed as

where yi, (μi, vi) and εi are same as in model (1), a and b are the global and local predictor variables, respectively, 
aj is the jth global coefficient, xij(a) is the jth global predictor variable, xil(b) is the lth local predictor variable, 
bl(µi,vi) is the lth local coefficient.

In contrast to GWR and SGWR, MGWR relaxes this assumption by allowing the associations between the 
outcome of interest and the predictors to vary at different spatial scale63. The MGWR model can be expressed as:

where βbwj is the calibration bandwidth for the jth conditional association, (μi, vi), xij, εi and yi are the same as 
in the first formula (1).

In the MGWR model, we selected the bi-square weighting function as the adaptive kernel to account for 
the differences in the size of the districts and their varying population density54,64. The Golden Section search 
option was used for the bandwidth searching. This option successively narrows the range of values for the optimal 
bandwidth and returns the lowest score by comparing the optimization score for each model64,65. We used the 
corrected Akaike’s Information Criteria (AICc) for the optimization criteria where the bandwidth the lowest AICc 
is selected and used in the analysis. As a model diagnostics technique, AICc accounts for the model complexity 
and also enables a comparison of the global model (OLS) and the local model (MGWR) to determine whether 

(1)yi =
∑

j

βj(µi, vi)xij + εi,

(2)yi =
∑

j

ajxij(a)+
∑

l

bl(µi, vi)xil(b)+ εi,

(3)yi =
∑

j

βbwj(µi, vi)xij + εi,
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using spatial varying model improves the model66,67. The Monte Carlo test of spatial variability was specified to 
determine if the model parameters for the predictors significantly varied across the geographic units (districts). 
Reported p values less than 0.05 suggest spatial variability in the local term(s) or predictor(s). Natural breaks 
(Jenks) classification method was used classify the visualised descriptive data and local statistics (MGWR) results. 
Jenks classifies the data based on natural groupings inherent in the data. The unit of analysis for the spatial models 
was district or county (n = 112). The descriptive, multilevel analysis and spatial autoregressive statistical analyses 
were performed using STATA statistical software package version 16 by StataCorp (College Station, TX). We 
report the exponentiated coefficients (expβ) for the bivariate and multivariate (multilevel) regression results; 
while the spatial models report the beta coefficients. MGWR analysis was conducted in MGWR 2.1 software 
and visualised in ArcMap 10.6 by ESRI.

Ethical approval and consent to participate.  The data for this study was obtained from the Demo-
graphic and Health Survey (DHS) platform. Procedures and questionnaires for standard DHS surveys have 
been reviewed and approved by the ICF Institutional Review Board (IRB). Additionally, country-specific DHS 
survey protocols are reviewed by the ICF IRB and typically by an IRB in the host country. ICF IRB ensures that 
the survey complies with the U.S. Department of Health and Human Services regulations for the protection of 
human subjects (45 CFR 46), while the host country IRB ensures that the survey complies with laws and norms 
of the nation.

Informed and Voluntary Participation.  Before each interview or biomarker test is conducted, an informed con-
sent statement is read to the respondent, who may accept or decline to participate. A parent or guardian must 
provide consent before participation by a child or adolescent. DHS informed consent statements provide details 
regarding:

•	 The purpose of the interview/test
•	 The expected duration of the interview
•	 Interview/test procedures
•	 Potential risks to the respondent
•	 Potential benefits to the respondent
•	 Contact information for a person who can provide the respondent with more information about the inter-

view/test

Most importantly, the informed consent statement emphasizes that participation is voluntary; that the respondent 
may refuse to answer any question, decline any biomarker test, or terminate participation at any time; and that 
the respondent’s identity and information will be kept strictly confidential.

Data availability
We do not have permission to share the research data. The main research data can be assessed through the DHS 
Program web portal. However, the data on the estimates of predictors and outcomes are available upon reason-
able request.
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