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Abstract
A traditional-style phonetic-acoustic forensic-speaker-
recognition analysis was conducted on Australian English /o/
recordings. Different parametric curves were fitted to the
formant trajectories of the vowel tokens, and cross-validated
likelihood ratios were calculated using a single-stage
generative multivariate kernel density formula. The outputs of
different systems were compared using Cllr, a metric
developed for automatic speaker recognition, and the cross-
validated likelihood ratios were calibrated using a procedure
developed for automatic speaker recognition. Calibration
ameliorated some likelihood-ratio results which had offered
strong support for a contrary-to-fact hypothesis.
Index Terms: forensic speaker recognition, calibration,
formant trajectories

1. Introduction
Two approaches to forensic speaker analysis have been
traditional, rooted in phonetics, and automatic, rooted in
engineering. This paper presents an analysis which
incorporates components from both approaches. The analysis
is traditional in the sense that:
• A human expert manually selected phonemes to be

compared.
• Formants rather than cepstra were measured.
• Acoustic analysis was semi-automatic, with a human

expert checking and, when necessary correcting, the
results.

• Likelihood ratios were calculated using a generative
formula which is commonly used in traditional forensic
speaker recognition.

The analysis includes automatic components in that:
• The effectiveness of the system was assessed using a

metric which was developed for use with discriminative
automatic speaker recognition.

• The likelihood ratios were calibrated using a procedure
which was developed for use with automatic speaker
recognition.

2. Methodology

2.1. Data

Data consisted of laboratory-quality audio recordings of
sentences of the form “Hoe, H-O-E spells hoe.” The target
words in the sentences all contained the phoneme /o/ (often
transcribed as /o/). The words were “hoe” /ho/, “Hote” /hot/,
“hoed” /hod/, “bow” /bo/, “boat” /bot/, and “bode” /bod/. The
sentences were read by 27 male speakers of Australian
English whose ages ranged from 20 to 63 (median 39). Each
speaker was recorded on two separate occasions separated by

approximately two weeks. Within each session, the speaker
was recorded reading each sentence twice. Written prompts
were presented in random order, and the sentences
containing /o/ words were mixed in with sentences containing
words exemplifying a number of other vowels. Recordings
were made using a Sony ECM-MS907 microphone and an
Edirol R-1 recorder with the signal digitalized at 44.1 kHz.

2.2. Acoustic analysis

The first and final word of each sentence was analyzed. The
beginning and end of each vowel were manually marked. The
trajectories of the first three formants (F1, F2, and F3) of each
word were tracked using the formant tracking procedure
outlined in [1]: The number of linear-predictive-coding
coefficients was fixed at nine, and formants were tracked
using the algorithm described in [2]. The formants were
tracked eight times using eight different cutoff values for F3
(range 2500–4000 Hz). Each of the eight formant-track sets
was visually displayed overlayed on a spectrogram. The
measured intensity, fundamental frequency, and formant
frequencies were also used to synthesize a vowel. The
researcher could listen to the original vowel and a synthesized
vowel based on any desired track set. On the basis of visual
and auditory inspection, the researcher selected what they
judged to be the best formant-track set. The researcher also
had the option of manually editing formant tracks, and of
adjusting parameters for fundamental frequency measurement.
Figure 1 shows the mean formant tracks averaged over all
speakers and tokens.

Figure 1: Mean F1, F2, and F3 trajectories for /o/
averaged over all speakers and tokens.
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2.3. Curve fitting

Parametric curves were fitted to the three formant trajectories
extracted from each vowel. Second and third order (quadratic
and cubic) polynomials and discrete cosine transforms (DCT)
[3,4] were fitted. The estimated coefficient values from the
curve fitting were used as variables in the calculation of
likelihood ratios (see §2.4). In the case of the polynomials,
these included the values of the intercept plus the first through
second, or first through third order terms. In the case of the
DCTs, these included the values of the DC offset (zeroth
coefficient) plus the first through second or first through third
coefficients (the latter corresponding to the amplitudes of a
half cycle, one cycle, and one-and-a-half cycles of a cosine).

Curves were fitted to trajectories scaled in hertz and in
log-hertz. Also, curves were fitted to the trajectories using the
original time scale (vowels varied in duration and formant
measurements were available every two milliseconds) and
using an equalized-duration time scale (formant values were
linearly interpolated to the range 0–150 ms in 2 ms intervals). 

2.4. Likelihood ratio calculation

Likelihood ratios were calculated using the multivariate kernel
density formula developed by Aitken & Lucy [5,6]. This
formula assesses the difference between suspect and offender
samples with respect to their typicality in reference to a
background distribution estimated using data from a sample
taken from the appropriate population. Within-speaker
variance is estimated via a normal distribution, and between-
speaker variance is estimated via a kernel density model. In
contrast to most automatic systems which first calculate
difference scores between pairs of speech samples and use
these as input to a discriminative or generative model [7], the
generative Aitken & Lucy formula derives likelihood ratios
via direct estimation of the probability densities of the original
variables. The variables entered into the formula were the
coefficient values from the parametric curve fitting (see §2.3).

Cross-validated likelihood ratios were calculated using
data from all same-speaker and different-speaker pairs: Each
speaker’s session-one recording was compared with their own
session-two recording, and with every other speaker’s session-
two recording. Data from all speakers except those being
compared were included in the background sample. (For the
calculation of the distribution of the background sample, data
from both sessions were pooled within speaker.) Compared to
using a model in which all data were included in the
background, cross-validation provides a more realistic picture
of how the system would perform on previously-unseen data,
such as data from casework.

2.5. Calibration and evaluation

A typical automatic speaker recognition system consists of
several stages including the calculation of difference scores
between pairs of recordings, the training of a model based on
the those scores, and the evaluation and calibration of the
results [7]. The evaluation and calibration techniques applied
to such multi-stage systems can also be applied to sets of
likelihood ratios obtained from a single-stage system such as a
system using the Aitken & Lucy formula [8].

The aim of calibration in forensic speaker recognition is to
present the information in such a way as to best aid the finder
of fact in making appropriate decisions [7]. Given two sets of
values derived from two categories (such as same-speaker
versus different-speaker comparisons) and a fixed decision
boundary for classifying the values, calibration monotonically
shifts and scales the values so as to produce the smallest

possible error rate. Likelihood ratios represent the probability
of obtaining the evidence under one hypothesis versus under
the competing hypothesis, e. g., the probability of obtaining
the observed differences between two speech samples under
the hypothesis that they were produced by the same speaker
versus under the hypothesis that they were produced by
different speakers. The decision boundary for likelihood ratios
is 1, e. g., values greater then 1 support the same-speaker
hypothesis and values less than 1 support the different-speaker
hypothesis (or if a logarithmic scale is used, log-likelihood-
ratio values greater than 0 support the same-speaker
hypothesis and values less than 0 support the different-speaker
hypothesis). Minimizing error rate is equivalent to minimizing
the value of a loss function. A loss function which is
independent of prior probabilities and costs, and which has
been adopted by the National Institute of Standards and
Technology Speaker Recognition Evaluations (NIST SRE), is
the log-likelihood-ratio cost (Cllr) [7,8,9]:
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where Nss and Nds are the number of same-speaker and
different speaker comparisons, and LRss and LRds are the
likelihood ratios derived from same-speaker and different-
speaker comparisons. Cllr is a continuous function which is
small for correct likelihood ratios (same-speaker comparisons
with likelihood ratios greater than 1 and different-speaker
comparisons with likelihood ratios less than 1) and asymptotes
towards zero as correct likelihood ratios diverge from 1, but
which is large for incorrect likelihood ratios (same-speaker
comparisons with likelihood ratios less than 1 and different-
speaker comparisons with likelihood ratios greater than 1) and
becomes exponentially large as incorrect likelihood ratios
diverge from 1. 

Cllr can be decomposed into the sum of two parts: Cllr
min is

the minimum loss which can be achieved for an optimally
calibrated system (a one-hundred percent correct-
classification rate may be impossible because the distribution
of scores from the two categories may overlap). Cllr

cal is the
calibration loss, which can be reduced by shifting and scaling
the scores relative to the decision boundary. Cllr

min can be used
as a metric for comparing the performance of different
systems. 

Cllr and Cllr
min were calculated for the cross-validated log

likelihood ratio values derived from the Aitken & Lucy
formula, and using the FoCal toolkit [10] the set of log
likelihood values were calibrated via a linear function
optimized on Cllr (this results in a post-calibration Cllr which is
somewhat greater than Cllr

min which is calculated using the
non-parametric pool-adjacent-violators function). Again a
cross-validation approach was adopted whereby likelihood
ratios from comparisons including a given speaker were
calibrated using data from all other speakers.

3. Results and Discussion

3.1. Performance of different systems

Figures 2 and 3 provide plots of Cllr values for the different
orders of polynomial and DCT curve fitting and different
combinations of time and frequency scaling. Figure 2 is based
on likelihood ratios derived using F1 through F3, and Figure 3
is based only on likelihood ratios derived using F2 and F3 – in
forensic-speaker-analysis casework recordings are typically
made via telephone systems and the bandpass properties of
telephone systems usually make F1 unusable, at least for



vowels with intrinsically low F1, such as the latter portions
of /o/ (see Figure 1).

Several observations can be made on the basis of these
results: 
• First, in all cases Cllr

cal is relatively large indicating that
substantial improvement can be achieved via calibration. 

• Second, Cllr
min values for the F2 & F3 analyses were

substantially larger than those for F1 through F3
analyses, indicating that F1 trajectories contain
substantial information pertinent to speaker identity, and
F1 trajectories should therefore be included if they are
not compromised by the channel. 

• Third, Cllr
min values were consistently smaller when the

durations of all vowels were equalized, indicating that
duration equalization improved system performance. 

Beyond these observations, there appears to be relatively little
difference between using polynomial and DCT curves,
between using second or third order parametric curves, or
between using a linear or logarithmic frequency scale. For the
equalized-duration combinations, Cllr

min ranged from 0.077 to
0.092 bits for the three-formant analyses, and from 0.141 to
0.178 bits for the two-formant analyses. 

Figure 2: Cllr for cross-validated likelihood ratios
based on trajectories of F1, F2, and F3.

Figure 3: Cllr for cross-validated likelihood ratios
based on trajectories of F2 and F3.

3.2. Calibration of best-performing system

For both the three and two-formant analyses, the best
performance was achieved using third-degree polynomials
fitted to linear-hertz-scaled equalized-duration formant
trajectories: The three-formant system had a Cllr

min of 0.077
bits and the two-formant system had a Cllr

min of 0.141 bits.
(The non-calibrated and calibrated three-formant systems had
Cllr values of 0.966 and 0.129 bits respectively, and the non-
calibrated and calibrated two-formant systems had Cllr values
of 0.998 and 0.198 bits respectively.)

Figures 4 and 5 provide Tippett plots [8,11,12] of the non-
calibrated and calibrated cross-validated likelihood ratios from
the analyses based on third-degree polynomials fitted to
linear-hertz-scaled equalized-duration formant trajectories. 

Figure 4: Tippett plot of the non-calibrated (dashed
lines) and calibrated (solid lines) cross-validated
likelihood ratios from the best performing system
using F1, F2, and F3 trajectories. The (red) curves
rising to the left represent the proportion of different-
speaker comparisons with log10 likelihood ratios
equal to or greater than the value indicated on the x-
axis. The (blue) curves rising to the right represent
the proportion of same-speaker comparisons with
log10 likelihood ratios equal to or less than the value
indicated on the x-axis. 

Figure 5: Tippett plot of the non-calibrated (dashed
lines) and calibrated (solid lines) cross-validated
likelihood ratios from the best performing system
using F2 and F3 trajectories. 



Calibration has resulted in a major reduction in misleading
likelihood ratios. For example, for the three-formant system,
the most misleading non-calibrated likelihood ratio from a
same-speaker comparison was a likelihood ratio of 1.02×10–5,
i.e., 97 940 in favor of the different-speaker hypothesis. This
value is of sufficient magnitude that an expert witness would
probably present it in court as support for the different-
speaker hypothesis, In fact it might be taken as “strong”
evidence in support of the different-speaker hypothesis [13].
Since we know that in this case the two speech samples
compared were both spoken by the same speaker, the
presentation of such a result in court could contribute to a
miscarriage of justice. In contrast, after calibration the
likelihood ratio from this same-speaker comparison has
shrunk to 2.21 in favor of the different-speaker hypothesis. A
likelihood ratio so close to 1 would not be interpreted as
meaningful support for either hypothesis.

For the three-formant system, the most misleading non-
calibrated likelihood ratio from a different-speaker
comparison was a likelihood ratio of 417 in favor of the same-
speaker hypothesis. This was actually slightly increased to
444 in favor of the same-speaker hypothesis after calibration.
Calibration has not ameliorated this contrary-to-fact
likelihood ratio, but neither has it done substantial harm
compared to the non-calibrated system. Using the verbal scale
from [13] these likelihood ratios would be considered
“moderately strong” evidence in support of the same-speaker
hypothesis. This result should be considered a warning that if
the procedures presented here are adopted for casework, the
verbal scales of [13] should not be applied blindly. If for a
comparison including a sample of unknown origin one obtains
a likelihood ratio of the same magnitude as likelihood ratios
which are know to be contrary to fact, then one would have to
be cautious about the use of such a likelihood ratio.

Calibration has also lead to more conservative evaluations
of the strength of evidence in the case of correct likelihood
ratios which are far from 1. For example, for the three-formant
system, the largest same-speaker likelihood ratio has shrunk
from 1.47×1016 to 3.60×106. The number of same-speaker
comparisons with likelihood ratios greater then 1000 has
fallen from fourteen to five.

3.3. Poor calibration of original likelihood ratios

Theoretically Aitken & Lucy’s generative formula should
directly produce well calibrated likelihood ratios. The
difference between the original and calibrated results is
therefore somewhat surprising. 

One possible reason for the poor calibration of the original
cross-validated likelihood ratios could be that there is
relatively little data from which to estimate the probability
density functions: There were only 28 recordings of /o/ per
speaker and 27 speakers, but the analysis on third-degree
curves fitted to three formants required the estimation of
covariance matrices for 12 parameters. Indeed bias-variance
trade-offs may account for the fact that differences in
performance between second-degree and third-degree
parametric curves were small. This problem could potentially
be remedied via the collection and analysis of a larger data
set. 

Another possible reason for poor initial calibration could
be that the Aitken & Lucy formula does not account for all
sources of variance in the speech data. The formula was
originally developed for the analysis of trace evidence such as
glass fragments, but the nature of speech data is more
complex. In estimating the probability density of the
background sample, the formula did not take into account

cross-session variance. Whereas the ratios of trace elements in
a pane of glass can be assumed to remain constant over time,
and only sample variance and measurement error need be
considered, the acoustic properties of a speaker’s voice
change from one occasion to another, and there may be
considerable difference in a speakers voice between recording
sessions. The context in which the /o/ vowels were produced
is also an unaccounted-for source of variance. There was
variation in the preceding and following consonant, and also
in the location of the target word being at the beginning or the
end of the sentence. 

4. Conclusions
Applying a calibration technique developed in automatic
speaker recognition to likelihood ratios derived via a
traditional phonetic-acoustic analysis of Australian English /o/
formant trajectories resulted in a major improvement in the
presentation of the performance of the system: Likelihood
ratios purporting strong evidence in favor of a contrary-to-fact
different-speaker hypothesis were shrunk to innocuous levels.
However, calibration also resulted in more conservative
values for large likelihood ratios which consistent-with-fact
supported the same-speaker hypothesis.
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