Risk of cancer associated with residential exposure to asbestos insulation: a whole-population cohort study

Rosemary J Korda, Mark S Clements, Bruce K Armstrong, Hsei Di Law, Tenniel Guiver, Philip R Anderson, Susan M Trevenar, Martyn D Kirk

Summary
Background The health risks associated with living in houses insulated with asbestos are unknown. Loose-fill asbestos was used to insulate some houses in the Australian Capital Territory (ACT). We compared the incidence of mesothelioma and other cancers in residents of the ACT who did and did not live in these houses.

Methods Our cohort study included all ACT residents identified using Medicare enrolment data. These data were linked to addresses of affected residential properties in the ACT to ascertain exposure. We followed up residents by linking data to the Australian Cancer Database and National Death Index. Outcomes were diagnosis of mesothelioma and selected other cancers. Effects were estimated for males and females separately using standardised incidence ratios (SIRs), adjusting for age and calendar time of diagnosis.

Findings Between Nov 1, 1983, and Dec 31, 2013, 1035 578 ACT residents were identified from the Medicare database. Of these, 17 248 (2%) had lived in an affected property, including seven (2%) of 285 people diagnosed with mesothelioma. The adjusted incidence of mesothelioma in males who had lived at an affected property was 2.5 times that of unexposed males (SIR 2.54, 95% CI 1.02–5.24). No mesotheliomas were reported among females who had lived at an affected property. Among individuals who had lived at an affected property, there was an elevated incidence of colorectal cancer in women (SIR 1.73, 95% CI 1.29–2.26) and prostate cancer in men (1.29, 1.07–1.54); colorectal cancer was increased, although not significantly, in males (SIR 1.32, 95% CI 0.99–1.72), with no significant increase in the other cancers studied.

Interpretation Residential asbestos insulation is likely to be unsafe. Our findings have important health, social, financial, and legal implications for governments and communities in which asbestos has been used to insulate houses.

Funding ACT Government.

Introduction Asbestos insulation has been used in residences in Australia1 and other countries including the USA, where use of asbestos-contaminated vermiculite insulation was widespread until the 1990s.2 Asbestos causes mesothelioma, and causal associations have been established for cancers of the lung, ovary, and larynx; epidemiological evidence for other cancers is scant.3 The risk of cancer increases with intensity, duration, and frequency of exposure to asbestos, with the predominant exposure route being inhalation and, to a lesser extent, ingestion.4 Because asbestos fibres are a health hazard when airborne, loose-fill asbestos insulation is of particular concern.

Estimates of cancer risk associated with asbestos exposure have been based largely on high exposure in occupational settings, including mining, manufacturing, and construction industries.5 Elevated risks have also been seen in family members of occupationally exposed workers6 and in communities living near asbestos-related industries.7–9 Far less is known about the risk of primarily domestic exposure.10–12 In particular, there is no scientific evidence on the risk of cancer associated with living in a house containing loose-fill asbestos insulation.

In Australia, between 1968 and 1979, some houses in the Australian Capital Territory (ACT) and southern New South Wales (NSW) were insulated by blowing crushed, loose-fill asbestos (largely amosite with some crocidolite) into roof spaces. Over time, asbestos fibres migrated to other areas such as wall cavities, subfloor spaces, cupboards, heating and cooling ducts and vents, living areas, and bedrooms.1 In 1989–93, the ACT Government surveyed the approximately 65 000 houses then in existence for the presence of loose-fill asbestos insulation, identifying around 1000 affected houses across suburbs, without obvious clustering in areas of high or low socioeconomic status. A programme was undertaken to remove visible and accessible loose-fill asbestos insulation from these houses. In 2013, attention was drawn to some houses that had been missed by this programme and, coincidentally, asbestos fibres were found in the living areas of many remediated houses.7 The ACT Government established the Asbestos Response Taskforce to manage the issue.9 Furthermore, they commissioned an
Research in context

Evidence before this study
We searched PubMed up to June 1, 2017, with the terms “asbestos”, “insulation”, “domestic”, and “cancer”. We restricted our search to English language publications. We also did hand searches of the reference lists of relevant papers. We identified no scientific reports on the risk of cancer associated with living in a house containing loose-fill asbestos insulation. Estimates of cancer risk associated with asbestos exposure have largely been based on high-level exposure in occupational settings. Far less is known about the risk of domestic exposure to asbestos and, in particular, to asbestos insulation.

Added value of this study
To the best of our knowledge, our study is the first to report empirical evidence on cancer risks associated with living in a house with asbestos insulation. In our cohort of 1 million people, the incidence of mesothelioma in men who had lived in a house insulated with loose-fill asbestos was two and a half times that of men who had not lived in these houses. No mesotheliomas were noted among women who had lived at an affected property. Incidence of colorectal cancer in men and women and prostate cancer in men also appeared to be raised in people who had lived in houses insulated with loose-fill asbestos.

Implications of all the available evidence
Residential asbestos insulation is likely to be unsafe. Our findings have important health, social, financial, and legal implications for governments and communities in which asbestos has been used to insulate houses.

Methods
Study population and data sources
The study population for our cohort study was drawn from the enrolment file of Medicare, the Australian universal health insurance provider, which covers almost the entire population of Australia. We included all people enrolled in Medicare with an ACT address at any time between Nov 1, 1983, when Medicare registrations began, and Dec 31, 2013, the last year of available cancer data at the time of this study. The Australian Institute of Health and Welfare—an accredited data integration authority—linked the Medicare enrolment file to three databases: the ACT Asbestos Response Taskforce register of all houses in which loose-fill insulation had been installed (referred to as affected residential properties); the Australian Cancer Database (from Jan 1, 1982, to Dec 31, 2013);1 and the National Death Index (from Jan 1, 1980, to June 30, 2016).11 For linkage of Medicare enrolments to the Australian Cancer Database and National Death Index, data records were matched probabilistically using full name, sex, date of birth, and postcode of residence. Linkage to the National Death Index also included all historical addresses for each person. More detail on data sources is provided in the appendix.

We obtained ethics approval for the study from the seven relevant Australian state and territory health departments and institutional human research ethics committees.

Procedures
We selected cancer outcomes for this study on the basis of the International Agency for Research on Cancer (IARC) review of evidence on cancer risks associated with asbestos exposure.1 We classified cancer diagnoses for the study cohort according to International Classification of Diseases version 10 (ICD-10) codes. Mesothelioma (ICD-10 code C45) was the primary cancer of interest, in view of its unique relation with asbestos exposure. Other asbestos-associated cancers included in the study were lung (C33 and C34, which includes bronchus, lung, and trachea), ovarian (C56), laryngeal (C32), pharyngeal (C09–C14), stomach (C16), and colorectal (C18–C20). We also examined four other common cancers with very weak or no evidence for association with asbestos: bladder cancer (C67), kidney cancer (C64), melanoma (C43), and prostate cancer (C50).

We classified exposed individuals as those who had ever lived at an affected residential property during the study period and unexposed individuals as those not known to have ever lived at an affected residential property. Any Medicare address matching an address on the Asbestos Response Taskforce list was flagged as an affected residential property. We reclassified affected residential properties that had been demolished as non-affected residential properties after the date of demolition. Post office boxes—constituting 12% of ACT addresses—were classified as non-affected residential properties.

Statistical analysis
We defined an individual’s entry into the study as the start date of their first Medicare registration, regardless of the Australian state or territory in which they were registered. We selected all patients diagnosed with a specified cancer and calculated the standardized incidence rate (SIR) for each cancer type. We calculated 95% CIs by the Wald method. We defined the attributable proportion of cases by comparing the observed SIR (SIRo) with the expected SIR (SIRE). We applied the proportional rates model described by Greenland, Fewell, and Longnecker12 to estimate attributable proportions. We used Calendar Year to define the exposure metric.
date that was after entry into the study, or had a recorded death date that was before entry into the study. For every cancer outcome, we also excluded individuals who had a diagnosis for that cancer registered before entry into the study.

Because of the known delay (lag) between first exposure to asbestos and diagnosis of asbestos-related disease, we decided a priori to apply a lag of 10 years between first exposure and diagnosis of a cancer that could be attributable to exposure in an affected residential property. Cancers diagnosed and person-years during this lag period were considered to be unexposed. We did not apply this lag to people resident at an affected residential property at the start of the study period, as we assumed previous residence of at least 10 years. We deemed all person-time and cancer diagnoses for cohort members having only non-affected residential property addresses to be unexposed.

We decided a priori to estimate incidence separately for males and females, because of potentially different levels of asbestos exposure within the household and from occupational sources. For each cancer, we calculated crude incidence for males and females among those exposed and unexposed to an affected residential property. For mesothelioma, which was the key outcome of interest, we also described incidence in relation to calendar period (5-year intervals), directly age-standardised to the 2001 Australian population (age groups <35 years, 35–44 years, 45–54 years, 55–64 years, 65–74 years, 75–84 years, and ≥85 years).

We used indirect standardisation to generate standardised incidence ratios (SIRs) and exact Poisson CIs separately for males and females and adjusted for age group and calendar period of diagnosis. Analyses were done using Stata version 12.1 and SAS version 7.1.

We did sensitivity analyses to investigate the effect of our assumptions on our findings. First, we varied lag periods to 5 years and 15 years. Second, we applied the 10-year lag to people living at an affected residential property. For mesothelioma, which was the key outcome, we also excluded individuals who had no date of birth (n=268), were born after study entry (n=124), or who died before study entry (n=1122), and a further five people diagnosed with mesothelioma before study entry, 1034059 (>99%) ACT registrants were included in the main mesothelioma analysis.

285 cases of mesothelioma were recorded during the study period, of which 152 (53%) were registered by cancer registries outside the ACT. Nine (3%) of 285 cases were diagnosed in people who had ever lived at an affected residential property. Two people were diagnosed with mesothelioma before they lived at an affected residential property (0–45 years and 5–7 years before) so the cancer was not attributed to exposure in an affected residential property. Seven individuals diagnosed with mesothelioma had lived at an affected residential property before their diagnosis. All seven exposed individuals, and 239 (86%) of 278 people diagnosed with mesothelioma who had not lived in an affected residential property, were men (table), and all cases were diagnosed...
with pleural mesothelioma. The average age of diagnosis was 58.1 years (SD 15.4; median 57.1 years [IQR 43.6–70.4]) for people who had lived at an affected residential property, and 67.4 years (SD 12.1; median 68.0 years [60.7–75.6]) for those who had not lived at an affected property. The time between date of first exposure to an affected residential property and mesothelioma diagnosis ranged from 12.8 years to 24.9 years (median 15.0 years [IQR 14.3–24.0]). The estimated time between exposure and diagnosis is probably a minimum, because five of the seven exposed cases were registered as living at an affected residence at the start of the study period.

The 285 cases of mesothelioma occurred over 21.9 million person-years of follow-up. Crude incidence was 1.30 cases (95% CI 1.15–1.46) per 100 000 person-years, with an incidence of 2.30 cases (2.02–2.60) per 100 000 person-years in males and 0.35 cases (0.25–0.47) per 100 000 person-years in females. Age-standardised incidence increased over time (figure 2). Crude incidence of mesothelioma in unexposed males was 2.25 cases (95% CI 1.97–2.56) per 100 000 person-years compared with 8.26 cases (3.32–17.0) per 100 000 person-years in males exposed to an affected residential property (table). After adjusting for age and calendar time of diagnosis, incidence of mesothelioma in exposed males was two and a half times that in unexposed males (SIR 2.54, 95% CI 1.02–5.24; figure 3). An estimated 4.2 (95% CI 0.06–11.7) excess cases of mesothelioma occurred in male residents of affected residential properties between 1984 and 2013.

Among unexposed females, the crude rate of mesothelioma was 0.35 (95% CI 0.25–0.48) per 100 000 person-years, with no cases in exposed females (table).

Among other asbestos-associated cancers, incidence of colorectal cancer was higher in ACT residents who had ever lived in an affected residential property than in people who had never lived in an affected property, for both males (SIR 2.54, 95% CI 1.02–5.24; figure 3), and females (1.73, 1.29–2.26; figure 3), although the figure for males was not statistically significant. For lung, ovarian, laryngeal, pharyngeal, and stomach cancers, which are also associated with asbestos exposure, no evidence was
noted of an association with affected residential property exposure (table; figure 3). With respect to the other four cancers investigated, incidence of bladder and kidney cancers and melanoma did not differ between exposed and unexposed residents, but the incidence of prostate cancer was higher in men exposed to an affected residential property than in those who were unexposed (SIR 1.29, 95% CI 1.07–1.54; figure 3).

In the three sensitivity analyses, the association between mesothelioma and living in an affected residential property was maintained, although considerable uncertainty was present around estimates (appendix). For colorectal and prostate cancer, excluding participants with post office boxes for mailing addresses had the greatest effect on results, substantially reducing the strength of association.

Discussion

We observed an incidence of mesothelioma around two and a half times higher in males who had ever lived in ACT houses containing loose-fill asbestos insulation (affected residential properties) than in males who had not. Of the other six cancers known to be associated or potentially associated with asbestos exposure, only colorectal cancer incidence was significantly elevated in residents who had lived at an affected property (exposed) compared with those who had not (unexposed). Additionally, we noted higher incidence of prostate cancer in exposed males than in unexposed males.

As far as we are aware, no previous studies have been done to estimate the risks of cancer among people who have lived at properties with loose-fill asbestos insulation. Nor, to our knowledge, have studies been done of the effects of living in houses insulated with asbestos-contaminated vermiculite (ore estimated to be 21–26% asbestos by weight), despite this substance being used extensively and remaining in millions of homes in the USA, Canada, and other countries. Rates of death from asbestos-associated diseases—including non-malignant respiratory diseases, chronic obstructive pulmonary disease, and asbestosis—are increased in the community of Libby, MT, USA, although at substantially lower levels than in people exposed occupationally to asbestos-containing vermiculite. The association we recorded between living in an affected residential property and mesothelioma in men is modest compared with that noted in studies of occupational or para-occupational exposure to asbestos. For example, among amphibole asbestos miners in Tyler, TX, USA, peritoneal mesothelioma had a standardised mortality ratio of 21.5 (95% CI 8.62–44.2) and pleural mesothelioma had a standardised mortality ratio of 222 (12.7–361). Furthermore, in asbestos textile workers in Italy, standardised mortality ratios for these two diseases were 29.1 (21.5–38.6) and 33.7 (25.7–43.4), respectively. Similarly, a very high incidence of mesothelioma has been recorded in crocidolite miners in Wittenoom, WA, Australia.

Figure 2: Age-standardised incidence of mesothelioma, by calendar period (1984–2013)

Incidence is directly age-standardised to the Australian 2001 population. Vertical bars represent 95% CIs around point estimates for the incidence in every period.

Table: SIRs and 95% CIs for cancers other than mesothelioma

<table>
<thead>
<tr>
<th>Cancers</th>
<th>Total cases</th>
<th>O/E</th>
<th>SIR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>2455</td>
<td>25/26</td>
<td>0.96 (0.62–1.41)</td>
</tr>
<tr>
<td>Laryngeal</td>
<td>254</td>
<td>4/260</td>
<td>1.54 (0.42–3.93)</td>
</tr>
<tr>
<td>Pharyngeal</td>
<td>292</td>
<td>6/21</td>
<td>1.87 (0.69–4.07)</td>
</tr>
<tr>
<td>Stomach</td>
<td>654</td>
<td>5/681</td>
<td>0.73 (0.24–1.71)</td>
</tr>
<tr>
<td>Colorectal</td>
<td>3788</td>
<td>54/409</td>
<td>1.32 (0.99–1.72)</td>
</tr>
<tr>
<td>Other cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>831</td>
<td>9/837</td>
<td>1.07 (0.49–2.04)</td>
</tr>
<tr>
<td>Kidney</td>
<td>860</td>
<td>11/918</td>
<td>1.25 (0.57–2.09)</td>
</tr>
<tr>
<td>Melanoma</td>
<td>3636</td>
<td>46/376</td>
<td>1.23 (0.80–1.61)</td>
</tr>
<tr>
<td>Prostate</td>
<td>8208</td>
<td>121/940</td>
<td>1.29 (1.07–1.54)</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>39</td>
<td>0/0.39</td>
<td>0.0 (0–9.37)*</td>
</tr>
<tr>
<td>Other asbestos-associated cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>1577</td>
<td>21/160</td>
<td>1.31 (0.81–2.01)</td>
</tr>
<tr>
<td>Ovarian</td>
<td>762</td>
<td>10/777</td>
<td>1.29 (0.62–2.37)</td>
</tr>
<tr>
<td>Laryngeal</td>
<td>33</td>
<td>1/31</td>
<td>3.25 (0.08–18.1)</td>
</tr>
<tr>
<td>Pharyngeal</td>
<td>85</td>
<td>1/94</td>
<td>1.07 (0.03–5.95)</td>
</tr>
<tr>
<td>Stomach</td>
<td>343</td>
<td>2/304</td>
<td>0.66 (0.08–2.37)</td>
</tr>
<tr>
<td>Colorectal</td>
<td>3186</td>
<td>53/307</td>
<td>1.73 (1.29–2.26)</td>
</tr>
<tr>
<td>Other cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td>241</td>
<td>2/21</td>
<td>0.94 (0.11–3.30)</td>
</tr>
<tr>
<td>Kidney</td>
<td>444</td>
<td>5/448</td>
<td>1.12 (0.36–2.60)</td>
</tr>
<tr>
<td>Melanoma</td>
<td>3049</td>
<td>33/294</td>
<td>1.26 (0.89–1.74)</td>
</tr>
</tbody>
</table>

Figure 3: Cancer outcomes

SIRs are the incidence of each selected cancer in ARP residents compared with the incidence in non-ARP residents, standardised for age and calendar period. SIRs are plotted on a log scale and are represented with squares, with 95% CIs indicated by horizontal lines. ARP=affected residential property. E=expected. O=observed. SIR=standardised incidence ratio. *One-sided 97.5% CI.

Our observation of an elevated SIR for mesothelioma in men but not women is consistent with previous evidence. This finding could suggest confounding by occupational exposure to asbestos, but it is unlikely that such exposure...
would be distributed differentially among residents who had and had not lived at an affected property. The association could indicate higher levels of exposure to loose-fill insulation among men. In a survey of residents of affected residential properties, a higher proportion of men than women reported entering the roof space (85% vs 41%), and 15% of men who had reported entering the roof space did so more than 50 times.

The association between living in a house insulated with loose-fill asbestos and colorectal cancer was somewhat unexpected. Previous studies on asbestos exposure and colorectal cancer have produced mixed findings, with elevated risks from prolonged exposure. The highest risk of colorectal cancer was noted among North American insulation workers and British male insulation workers. Further evidence supports an association between colorectal cancer and prolonged exposure to high levels of asbestos, but not with lower levels of exposure. In our study, it is possible that some exposure to asbestos occurred through ingestion, because asbestos fibres were found on surfaces in living areas of affected residential properties, including kitchen and dining areas. Ingestion of asbestos produces cancerous lesions in rats. However, evidence for an association between ingestion of asbestos and colorectal cancer is weak, making the link between loose-fill asbestos insulation and colorectal cancer in the ACT uncertain.

We did not expect to find a raised risk of prostate cancer in our study. Asbestos fibres have been noted in the prostate, and increased risks of prostate cancer were reported in a study of Finnish construction workers in an asbestos screening programme and in a cohort study of former residents of the crocidolite mining town of Wittenoom, WA, Australia. However, these elevated rates might have been attributable to ascertainment bias, with exposed men perhaps more likely to have been screened for prostate cancer than unexposed men. Thus, although a causal association between affected residential properties and prostate cancer is plausible, further evidence is needed before any conclusions can be drawn about this observation.

A major strength of our study is that we had access to a complete register of affected properties. We also had access to the Medicare database to assemble a population-based cohort. This allowed virtually complete coverage of the ACT population and use of an internal reference population. However, the Medicare database had limitations. Medicare registrations began in November, 1983, and exposure to loose-fill asbestos insulation might have occurred from 1968 onwards; hence, we might have misclassified people who were exposed to asbestos insulation before 1983 but did not live in an affected residential property after this time, or we might have missed them altogether if they moved away from the ACT or died. This possibility would be likely to bias results toward the null. Delays registering changes of address can also happen, which would have non-differentially affected accuracy of our estimates of person-years with respect to the exposure; as a result, estimates of absolute cancer incidence could be inaccurate, but SIRs are unlikely to be biased. Finally, individuals with post office boxes as their address might have been classified incorrectly as unexposed. In our sensitivity analysis, excluding people with post office boxes for their address, relative incidence of mesothelioma remained raised but uncertainty increased.

Another strength of our study was the use of data from an Australia-wide cancer registry to ascertain outcomes. However, we might have missed cases occurring before mandatory reporting began in the ACT in 1994, or residents who did not live in Australia at the time of their diagnosis. Furthermore, linkage to mortality data is subject to quality issues because of incomplete data for date of birth, particularly in earlier years; however, any under-ascertainment of cancers or deaths and linkage errors would be non-differential with respect to exposure to an affected residential property.

We were unable to account for potential confounding other than by age and sex. Potential confounders vary depending on the particular cancer, but include behavioural risk factors such as smoking in addition to occupational exposure to asbestos and prostate cancer screening. Smoking does not increase the risk of mesothelioma, but is a potential confounder (and effect-modifier) in the relation between exposure to an affected residential property and other cancers investigated in this study. In particular, the absence of information on smoking restricted the ability to interpret the findings for lung cancer. Finally, we lacked statistical power to analyse the rarer cancers.

The findings of our study have implications for public health policy about loose-fill asbestos insulation that remains in situ. The ACT Government undertook to purchase affected properties at an estimated cost of AU$1 billion, and identification and buy-back is now underway in NSW. These localised contamination issues have major implications for communities in terms of health and the social and financial effects. Internationally, information on the nature and scale of use of residential asbestos insulation is scarce, but it is clear from use of vermiculite in loft insulation in the USA and some other countries that the situation in Australia is not unique.

In conclusion, living in a house insulated with loose-fill asbestos could be associated with some mesotheliomas in men, possibly because of their entry into roof spaces of—and their renovation of—asbestos-insulated houses. The recorded associations between living in these houses and colorectal and prostate cancers were somewhat unexpected and should be regarded as uncertain, although some evidence exists for such associations in other studies of people exposed to asbestos. Future extension of our study to include more years of follow-up will be worthwhile.
Furthermore, studying the health of people exposed occupationally to this asbestos might be useful. Our findings have important health, social, financial, and legal implications for governments and communities in which asbestos has been used to insulate houses.

Contributors
RJK, MSC, BKA, and MDK had the idea for the study and contributed to study design. RJK, MSC, BKA, HDL, TG, PRA, SMT, and MDK did the literature search. RJK and MDK wrote the initial draft of the manuscript and all authors contributed to critical revision for important intellectual content and final approval of the submitted manuscript.

Declaration of interests
We declare no competing interests.

Acknowledgments
This work was funded by the ACT Government. The ACT Asbestos Health Study was overseen by a steering committee chaired by the Chief Health Officer of the ACT and comprising members of the ACT and New South Wales health departments, the Asbestos Response Taskforce, and the ACT Asbestos Health Study team. The ACT Asbestos Health Study steering committee provided comments on the methodological approach and the final manuscript.

References