


Fig. 1. Schem�tic di�gram of the audio (upper left) and visual (lower left) front ends leading to the concatenated noisy audio-visual feature vector ltV) , 
followed by noISY audiO feature enhancement (upper right), or aUdio-visual discriminative feature fusion (lower right). See also (1), (2), and (7).(9). 

2. NOISY AUDIO FEATURE ENHANCEMENT 

2.1. Problem Statement and Notation 

Given an audio-visual sequence of the speaker's face, let us de­
note time-synchronous audio and visual features, extracted from 
it at time t, as discussed in Section 3, by J 0':) and o\V), which 
are vectors of dimensionality D A and D v, respectively. The joint 
audio-visual speech information is captured by the concatenation 
of the two single-modality feature vectors, that we denote by 

O(AV)= [O(A)T O(V)T]T _ [OlAV) O(AV)]TE R'D 
t t , t - t,l , ••• , t,D , 

and is of dimension D = DA + D v . 

(1) 

�����$addition to the speech information, the audio feature vector 
a': ) captures environment noise. We hope to remove such inter­
ference and to produce enhanced audio features, that we denote 
by O\AE) ERDA, using the joint audio-visual speech information 
captured in vector (1). The resulting enhanced audio features can 
then be supplied to an ASR system, hopeful7, yielding improved 
�!ecognition over the use of the noisy ones. OCt ) . 

In this work, and similarly to [6], [7], we are interested in 
����� ���������
�$ �������$�����������������$ ���"�������$ O':E) �����$���$�������������$transformation ���	�$
the joint audio-visual feature vector O�AV) , namely as 

(2) 

where matrix pi�':1 = [p(tV! p':V! ... , p�:)]T is of dimension 

DAXD. its rows consisting of D-dimensional vectors plAY) T, fo�!�'
i = 1, ... , DA (see also Fi�.l? 

To estimate matrix PE�� , we assume that in addition to (1), 
�����	�����" audio feature vectors, denoted ���#�$O�AC), are available for a 
number of time instants t in a �������
���������" set, 7,2 We then seek to 
estimate the enhancement matrix in (2), such that O(

t
AE) $:I:: o(tO) 

over the training set T. acco�#i ng to ���
e two distance metrics, dis­
cussed next. 

2.2. Euclidean Distance Based Estimation 

A simple way �}�˜ estimate matrix pi�':1 is by considering the ap­
proximation O\AE) $:I:: o':C) in the Euclidean distance sense. Due 

I Throughout this work, lower·case bold letters denote column vectors, 
upper-case bold letters denote matrices, whereas. T and < • , • > denote 
a vector transpose and inner product of two vectors, respectively. 

2 Such a scenario is plausible, for example, when the noise is additive 
to the audio signal, and typical noise samples are known. In such a case, 
clean speech training data can be artificially corrupted to obtain noisy audio 
features that correspond to the original clean audio features. 

to (2), this is equivalent to solving DA MSE estimations 

P�AV) = argmin � [0(".0)_ < p OlAV) >]2 
, P L..., t,l 1 t , 

teT 
(3) 

for i = 1 ... " D A, i.e., one per row of the matrix P��':1 . Equations 
(3) result to DA systems of the Yule-Walker equations [13] 

D 
� [� O(A�) olAV)] p!AV) = � 0(".0) (AV) /r: - 1 D (4) L.-, L....J t" t,1e IJ L...J t,. °t,Ie' - , . ... , , 
j=1 teT teT 

where p��V) �����!�$ the j-th element of vector p�AV). Gauss­
Jordan elimination can be used to solve (4) [13], Note that the 
left hand side coefficients of all systems (4) are independe�� t of i , 
and they correspo��d to the audio-visual feature vector covariance 
matrix elements (assuming zero mean observations). 

2.3. Mahalanobis Distance Based Estimation 

A more sophisticated way of estimating pi� is by weighting 
each term of the sum in (3) by the inverse variance of the clean au­
dio vector element 0��0), denoted by at [13]. Thus, (3) becomes· 

(AC) (AV) 
p�AV) = arg �in L [Ot,; - < p • at > ) 2 , (5) 

teT tTt,. 

for i = 1, ... , DA. It is not difficult to see that this is equivalent 
to considering a Mahalanobis type distance between vectors O\AE) 

and O�AC). under the assumption of the latter having a diagonal co­
variance. Of course, estimating tTt." for i = 1, ... , DA and t e T, 
becomes an issue. In this work, we consider clustering the train­
ing set vectors O\AO) into a small set of classes C, such as ���������
�����"
or alternatively, context-independent, or context-dependent hidden 
��������� �" �������	���" (HMM) states [1]. Class labels at each time instant 
t, denoted by c(t) E C, can then readily be obtained ���!�"f�����
���"

�������������	�����" of the training set utterances using a suitably trained 
HMM [1]. Subsequently, clean audio feature variances can be es­
timated for the various classes, based on the training data. 

Substituting class variances in (5), it is not hard to ���������$ ���
���$

new set of DA linear equation systems, the solution of which pro­
vides plAV), for i = 1 ..... DA, namely 

D O(AV)O(AV) (AC) (AV) � [ � t.j t •• ]p�A�) = �Ot.i at." k -1 D (6) � L....- tr: 2 't' L..J 2 , - ,··"1 .. 
j=1 teT e(t).i teT u,,(t).i 

Notice, that in contrast to (4), the left hand side coefficients of 
systems (6) now depend on the vector element i. 
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Table 1. The audio-visual databases and their training and test set parti­

tioning (number of utterances, duration (in hours), and number of subjects 

are depicted for each set). Two recognition taslcs are considered: Continu­

ous read speech (LVCSR) and connected digits (DIGITS). 

3. SINGLE-MODALITY FEATURES AND 
AUDIO.VISUAL FEATURE FUSION 

We now briefty review our basic audio-visual ASR system, intro­
duced in [12] and depicted in Fig.1. Given the audio·visual data 
sequence, we first extract time-synchronous static audio and vi­
sual features at a rate of 100 Hz, denoted by y�.) ERn., where 
8 = A ,V, respectively. The audio features are 24 MFCCs, com­
puted over a sliding window of 25ms at a rate of 100 Hz, followed 
by feature mean normalization (FMN). The visual features are the 
24 highest energy discrete cosine transform coefficients of a 64><64 
pixel mouth region of interest (ROI), extracted at the video field 
rate (60 Hz), followed by interpolation to the audio feature rate 
and FMN (see Fig.!). T he mouth ROI is extracted using a statis­
tical face tracking algorithm, as discussed in [12]. Subsequently, 
and in order to capture dynamic speech information within each 
modality, we concatenate J. consecutive static features into vec­
tors 

(7) 

of dimension d. = J. n. , where 8 = A ,V. To reduce the dimen­
sionality of the resulting vectors and improve speech class discrim· 
ination, we apply a linear discriminant analysis (LDA) projection 
on (7), followed by a rotation by means of a maximum lilaJlihood 
linear transform (MLLn that improves statistical data modeling. 
This results to dynamic audio and visual features 

(8) 

where 8 = A ,V , and matrices PL�� and pJ�LT are of dimen­
sions D, x d. and D. x D., respectively [12] (see also Fig. 1). 

Following the audio and visual feature concatenation (1), a 
second stage of LDA and MLLT is applied on o�J.v) to discrimi­
nantly reduce its dimensionality. The resulting fused features 

O�HiLDA) = P��� p��) O\AV) E RDHILDA, (9) 

can be fed into a traditional HMM-based ASR system. Due to the 
two-stage application of LDA and MLLT, the method is referred to 
as hierarchical LDA (HiLDA) and it constitutes an effective feature 
fusion approach for audio-visual ASR (12). In our system, we use 
values nA = 24, JA = 9, DA = 60 , and nv = 24, Jv = 15, 
Dv = 41 , whereas DHiLDA = 60. Note that D = 101 (see (I», 
and that DA = DHiLDA. i.e., the dimensionalities of the enhanced 
audio and HiLDA audio-visual feature vectors are equal. 

4. AUDIO-VISUAL DATABASES AND EXPERIMENTS 

Our experiments are performed on two audio-visual speech data 
corpora: A corpus of SO subjects uttering connected digit sequences 

Features II 11.6 dB I 3.4 dB I 
Noisy audio-only 2.327 8.176 
Enhanced audio (Euclidean distance) 2.016 5.517 
Enhanced audio (Mahal.- 22 classes) 2.260 5.761 
Enhanced audio (Mahal.. 66 classes) 2.282 5.783 
Enhanced audio (Mabal.·159 classes) 2.282 5.805 
Audio-visual (HiLDA fusion) 1.839 3.324 

Table 2. Test set WER <"AI) for noisy audio-only, audio-visually enhanced 
audio (using Euclidean or Mlhalanobis distance), and audio-visual HiLDA 

features for the DIGITS task at two noise conditions. 

(referred to as the DIGITS recognition task), as well as, on a part of 
the mM Via Voice ™ audio-visual database [12], consisting of265 
subjects uttering continuous read speech with mostly verbalized 
punctuation and a 10.4 k word vocabulary, i.e., a large vocabulary, 
continuous speech recognition (LVCSR) task. In both corpora, the 
video contains the full frontal subject face in color, has a frame 
size of 704 x 480 pixels, is captured interlaced at a rate of 30 Hz 
(60 fields per second are available at half the vertical resolution), 
and is MPEG-2 encoded at a compression ratio of about 50: 1. The 
audio is captured at 16 kHz in an office environment at a 19.5 dB 
signal-to-noise ratio (SNR). 

The two corpora are partitioned into training and test sets, suit­
able for multi-speaker (DIGITS) or speaker-independent (LVCSR) 
recognition. as depicted in Table I. For both tasks, non-stationary 
speech ''babble'' noise is artificially added to the audio channel at 
various SNR values. Subsequently, at each SNR (and task), audio 
enhancement matrices are computed by means ofMSE estimation 
on the training set, using the Euclidean or the Mahalanobis dis­
tance, as discussed in Section 2. HMMs are then trained on the 
resulting enhanced audio, and their ASR performance is evaluated 
on the test set This is benchmarked against the ASR performance 
of HMMs trained on audio-visual HiLDA features, as well as on 
the noisy audio-only front end. Note that for all three system", the 
LDA and MLLT matrices (see Fig. J) are trained on data matched 
to the noise condition (SNR level) under consideration. HMMs 
with 159 and 2808 context-dependent states are used for the DIG­
ITS and LVCSR tasks, respectively, and a tri-gram language model 
is used during LVCSR decoding. Furthermore, the number of 
HMM Gaussian mixtures is kept approximately the aame across 
the ASR systems trained on the enhanced audio, noisy audio, and 
HiLDA audio-visual front ends. 

In Table 2, we report performance on the DIGITS task and two 
SNR conditions of the ASR systems trained on the various front 
ends discussed in this work. Both Euclidean and.Mahalanobis 
distance based MSE estimation for audio enhancement is consid­
ered. In particular. in the latter case, various number of classes 
are evaluated, namely a 22 phone class partitioning of the train­
ing set data, as well as, a 66 context-dependent HMM state and 
a 159 context-independent HMM state partitioning. Notice that 
Euclidean distance based audio enhancement slightly outperforms 
the Mahalanobis based approaches, therefore, in the subsequent 
experiments, we only consider the Euclidean distlince. Further­
more, all enhanced audio features reduce word error rate (WER) 
over noisy audio-only features, but do not reach the performance 
of the HiLDA audio-visual features. 

The last point is reinforced in Fig.2, where the performance 
of Euclidean distance based enhanced audio ASR is compared to 
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