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Fig. 1. Schematic diagram of te audo (L,Iﬂ |Ef) & visu (Iowr Ief) “nt end leadin t0 te co m———m enisy audio-visul fe= vector &AV),
followed by noiSY audio featur e m=—m ment (Upper righ, or aUdio-visual d === &/ fe= Fion (I'wr rigt). See also (1), (2), & (7).(9).

2. NOISY AUIO FEATUE ENHANCEMENT

2.1. Problem Statement and Notation

Given an audio-visual sequence o ft hspeaker’s face, let us de-

note time-synchrnous a udand v i s feahires, e x t r aftome d
it at time t, as discussed in S e ¢ t 3, byd o%*? and 0%, which
arev e c toofd isme ns i ©pand Dv, respectively. The joint
audio-visual speech information i saptured byt heoncat ena
oft hteosi ngl e- rfeatdrev & ¢ t that we denote by

o= P®T oMTIT= P! ITERD

andi ef dime sionD = DA+ Dv.
addition to the speech information, the audio featurev e c t o r

o' captures environment n o i Ve hope t gemove such inter-
ference and t_@roduce enhanced audio features, that wedenot e
by O\ ) ERD ,using t hjeinta u di o - spéechiinformation
captured in vector (1). The resulting enhanced audio features can
then be supplied to an ASR system, h o p €ly yielding improved
kcognition over the use of the noisy ones, O;

In €is wor, ad similarly € [6], [7], we arient eriers t

$ 8 $ * $0"E) ss  dransformation s
thejoint audiovisual feature vector O[A ) , hamely as
AE; AV) _(AV
o™ = Py o™, @

= plip=Vi., p‘l;‘:')]T is of dimension
J, fol'

where matrix P{AY,
DAXD. its rows consistingo fD- d i me n s & o njd
i =1,..,Dp (see also Fi(g.l)

To estimate matrix PiAY , we assumet h atm d di toi(1d,n

»audio feature vectors, denoted # §1°C), are available for a
number of time instants £ in a "set, 7,2 Wet h eseek to
est i rhaenkancement matrix in (2), Scht at 0™ x o(AC)
over the training set T. acco#ing to et w distance metrics, dis-
cussed next.

2.2. Euclidean Distance Based Estimation

A simple wazs 'y Sstimat enatrix P{AY) is by considering the ap-
\AE

proximation ~ o* in the Euclidean distance sense. Due
i

Throughout this WoIr-, lower-cae bold leters.cdno column vectors,
upper-cae bold letters denote matices, whereas - ! and < e, @ > denote
a vector transpose and inner product of two vectors, respectively.

Such a scenario is plausible, for example, when e noise is additive
to the audio signal, ad tpical noise samples are lkk«>. In such a case,
clean == B training data can be axifcially co —ptd t0 obtin noisy audio
feaures that corespond to e original clea audio features.

e

t ¢2), this is equivale ntt §0lv i g DA MSE estimations
[o{A- <p,0lW) 512,

teT

PIAV)

agmin A3)
P

f oir=1,..",DA, i.e., one per row of the matrix P{AY, . Equations

(3) resul £ DA systems of the Yule-Walker equations [13]

ion

o P =

(AC)
O¢i

teT

o), /=1 _.D, @

j=1 teT

where p][v) '$  the j-th element of vector p[AV), Gauss-
Jordan elimination can be u s etalsolve (4) [13]. Note &t the
lef h a dside coefficients of all systems (4) are independe t of i,
a n they correspo d to the audio-visual feature vector covariance
matrix elements (assuming zeromeano b s er at ons ) .

2.3. Mahalanobis Distance Based Estimation

A more sophisticated way of estimating Piny; is by weighting

eacht e ro fthe sum in (3) by the inverse variance of the clean au-

dPo Vector element oﬁ_‘,.c),

(AC)_ ,o,(AV) >
<p
1t,.

)2, 0

pAY) = ag minz
P teT

f oir= 1,..., DA. Itis no tdifFcult to see tht this is equivalent
T considerng a Mahalanobis type distance between vectors o)l
and 0["(5, under the assumption of the latter having a diagonal ¢ o
variance. Of course, estimating tt" f oir=1,... DA adte T,
becomes an issue, Int h ive r we considerc | u s t ther & in-
ings evte c tQY'0)sinto a small ss o fclases C, such as
or alternatively, context-independent, o context-dependent hidden

" «& Idtates [1]. Class labels at each time instant
t, denoted by c(t) E C, cant h eaeadily be obtained '"f

" of the training set u@—axces u s i a gyitably trained

HMM [1]. Subsequently, clean audio fe-a= variances can b es-
timated f otr hvarious classes, b a s endhe training d«

Substitting class variances in (5), it is not hard to $
new set of DA linear equation systems, the so Wt an o fwhich pro-

vides p{*¥?, f oir=1,..., DA, namely
A AC) (AV
D DS.JY)O:&Vﬂp:A[) _ "s.i )°$.k) k=1 _.D. (6
2 (% N 1 e
j=1 teT %e(®)i ! teT %e(t)i

Notice, that in contrast to (4), the left hand side coefficients of
systems (6) now d e p eon the vectorelement i.
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denoted by o2, [13]. Thus, (3) becomes

$



Recognition

Training set Test set Features 11.6dB | 3.4dB
task Utter. [ Dur. | Sub. || Utter. | Dur. [ Sub. Noisy audio-only 2.327 | 8.176 |

LVCSR 17111 | 34:55 | 239 1038 | 2:29 | 26
DIGITS 5490 | 8:01 50 529 | 0:46 | 50

T a b |1e The audio-visual «—# es ad their taining ad test set parti-
tioning (number of utterances, duration (in hours), and number of subjects
are depicted for h set). Two recognition tasks are considered: Continu-
ous rra speech (LVCSR) and connected digits (DIGITS).

3. SE GLE-MODALITY FEATURS AN
AUDI O. VI SURAT FUSI ON

We now briefy review our baic audio-visual ASR system, intro-
duced in [12] and depicted in Fig.1. Given the audio-visual data
sequence, we first extract time-synchronous szatic audio and /-
sual features at a rate of 100 H, denoted by y'”) ERn., where
s = A, Vrespectively. The audio features are 24 MFCCs, com-
puted over a sliding window of 25ms at a rate of 100 H followed
by feature mean no v—alization (FMN). The visual features are the
24 highest energy discrete cosine transform coefficients of a 64>64
pixel mouth region of interest (ROI), extracted at the video field
rate (60 H), followed by interpolation to the audio feature rate
and — (see Fig.1). The mouth ROI is extracted using a statis-
tical face tracking algorithm, as discussed in [12]. Subsequently,
and in order t capture dynamic speech information within each
modality, we concatenate J. consecutive static features into vec-
Trs

x(:) = [ yg(:)l:‘]-‘/ﬂ EARd] YSJ) -‘:“') yt(.:.)[;_/z] -1 ]T’ (7)
of dimension d. = J. n,, whe s = A V. To reduce the. dmen-
sionality of the resulting vectors and improve speech class discrim-
ination, we apply a linear discriminant analysis (LDA) projection
on (7), followed by a rotation by means of a maximum li 1l lihood
linear transform (MLLT) that improves statistical data modeling.
This results to dynamic audio and visual features

D,
O(t‘) = w(::.)m P, L(l;)A x(e') € R™, ®

where s = A Vv, and matrices P,‘(t',)A and PJ,?,_T are of dimen-
sions D, x d. and D. x D., respectively [12] (see also Fig. 1).

Following the audio and visual feature concatenation (1), a
second stage of LDA and MLLT is applied on o'*"? to discrimi-
nantly reduce its dimensionality. The resulting fused features

o(tHiLDA) = n(a:,‘gr PIESX) o(tAV) E RDHILDA, 9

can be fed into a traditional HMM-based ASR system. Due t the
two-stage application of LDA and MLLT, the method is referred to
as hierarchical LDA (HILDA) and it constitutes an effective feature
fusion approach for audio-visual ASR [12]. In our system, we use
values na = 24, JA = 9, DA = 60, and ny = 24, Jv = 15,
Dv =41, whereas DHILDA = 60. Note that D = 101 (see (I»,
and that DA = DHILDA. i.e., the dimensionalities of the enhanced
audio and HiLDA audio-visual feature vectors are equal.

4. AUIO-VISUAL DATABASES A\ EXE F=XNTS

Ou experiments are performed on two audio-visual speech data
coror: Acorus ofSOsubjects uttering cnnected digt sequences

Enhanced audio (Euclidean distance) 2.016 5.517
Enhanced audio (Mahal.- 22 classes) 2.260 | 5.761
Enhanced audio (Mahal.- 66 classes) 2.282 5.783
Enhanced audio (Mahal.-159 classes) 2.282 5.805
Audio-visual (HILDA fusion) 1.839 3.32p

T a b 12eTest set WER (%) for noisy audio-only, audio-visually e
audio (using Euclidean or MIhalanobis distance), =x audio-visual HILDA
features for the DIGITS task at two noise conditions.

(referred to as the DIGITS recognition task), as well as, on a part of
the IBM ViaVoice™ audio-visual database [12}, consisting of 265
subjects uttering continuous read speech with mostly verbalized
punctuation and a 10.4 k v r- vocabulary, i.e., a large vocabulary,
continuous speech recognition (LVCSR) task. 1 both corpora, the
video contains the full frontal subject face in color, I a frame
size of 704 x 480 pixels, is captured interlaced at a rate of 30 H
(60 feld per second are avilale at half te verical resolution),
and is MEG-2 encoded at a compression ratio of about 50:1. The
audio is captured at 16 k<z in an office environment ata 195 d
signal-to-noise ratio ().

The two corpora are partitionedintot i i gand test sets, suit-
able for multi-speaker (DIGITS) or speaker-independent (LVCSR)
recognition, as depicted in Table 1. For both tasks, non-stationary
speech “babble” noise is artificially added to the audio channel at
various SNR values. Subsequently, at each SNR (andt k ) audio
enhancement matrices are computed by means of MSE estimation
on the training <s, using the Euclidean or the Mahalanobis dis-
tance, as discussed in Section 2. B—1 Nare then trained on the
resulting enhanced audio, and their ASR performance is evaluated
on the test set. This is benchmarked against the ASR performance
of HMMs trained on audio-visual HILDA features, as well as on
the noisy audio-only front end. Note that for all three systems, the
LDA and MLLT matrices (see Fig. J) are trained on data matched
to the noise condition (SNR level) under consideration. ¥=—a M
with 159 and 2808 context-dependent states are used for the DIG-
ITS and LVCSR tasks, respectively, and a €- «—3 language model
is used during LVCSR decoding. Furthermore, the number of
HMM Gaussian mixtures is kept approximately the same across
the ASR systems trained on the enhanced audio, noisy audio, and
HiLDA audio-visual front ends.

In Table 2, we r > performance on the DIGITS task and two
SN conditions of the ASR systems trained on the various front
ends discussed in this work. Both Euclidean and.Mahalanobis
distance based MSE estimation for audio enhancement is consid-
ered. 1 particular, i the latter case, various number of classes
are evaluated, namely a 22 phone class partitioning of the train-
ing set A as well as, a 66 context-dependent B—1 Nstate and
a 159 context-independent =—1 Nstate partitioning. Notice that
Euclidean distance based audio enhancement slightly outperforms
the Mahalanobis based approaches, therefore, in the subsequent
experiments, we only consider the Euclidean distance. Further-
more, all enhanced audio features reduce v r error rate (WER)
over noisy audio-only features, but d not reach the performance
of the HILDA audio-visual features.

The last point is reinforced in Fig.2, where the performance
of Euclidean distance based enhanced audio ASR is compared to
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