
Algorithms

for

Symmetry Analysis

by

Shih-lung Tracy Huang

A thesis submitted in partial fulfilment of

the requirements of the degree of Masters of

Information Sciences (Research), University

of Canberra.

November 2009

c© Shih-lung Tracy Huang, 2009

Abstract

We consider Lie point symmetry analysis of differential equations (DEs).

For a family of DE systems containing arbitrary elements, the problem

of symmetry classification can be solved algorithmically using a differen-

tial reduction & completion (DRC) algorithm applied to the determining

equations of the symmetry vector fields. DRC algorithms such as Reid

and Wittkopf’s RIF split the determining equations into a number of cases.

A family of DEs may additionally have some equivalence transformations

which map DEs to other DEs within the same family. Case splittings of

the symmetry classification should be invariant under the action of this

equivalence group.

In this thesis, we give a new procedure for testing case splittings for in-

variance under the equivalence group action. The procedure uses the Lie

infinitesimal technique and works on the level of determining equations.

It is based on a method of computing prolongations of vector fields whose

infinitesimals satisfy given determining equations. Our procedure does

not need to know the equivalence group or the equivalence vector fields.

The process is algorithmic and has been implemented as a package in the

computer algebra system Maple. This package is to assist the existing DRC

package rifsimp (which uses RIF algorithm) to improve classifying sym-

metries. We illustrate use of the package by applying it to symmetry clas-

sification of the 1+1 Richards equation and linear hyperbolic equations.

ii

Certificate of Authorship of Thesis

Except where clearly acknowledged in footnotes, quotations and the bib-

liography, I certify that I am the sole author of the thesis submitted today

entitled

Algorithms for Symmetry Analysis

I further certify that to the best of my knowledge the thesis contains no

material previously published or written by another person except where

due reference is made in the text of the thesis.

The material in the thesis has not been the basis of an award of any other

degree or diploma except where due reference is made in the text of the

thesis.

The thesis complies with University requirements for a thesis as set out in
http://www.canberra.edu.eu/secretariat/goldbook/forms/

thesisrqmt.pdf

Signature of Candidate:

Signature of chair of

the supervisory panel:

Date:

iii

http://www.canberra.edu.eu/secretariat/goldbook/forms/thesisrqmt.pdf
http://www.canberra.edu.eu/secretariat/goldbook/forms/thesisrqmt.pdf

Acknowledgements

I am deeply indebted to my supervisor, Dr. Ian Lisle, for his guidance, en-

couragement and generous (unlimited) support throughout the years. His

enthusiasm, his mathematical knowledge & proficiency and his patience

guided me to the end of the thesis. More importantly, his fussiness has

brought this research to a high standard – I thank him sincerely.

I am also deeply indebted to my co-supervisor, Dr. Peter Vassiliou, for

giving excellent math advice & seminars and criticisms in the final stages

of my thesis.

Special thanks to Dr. Gregory Reid and Dr. Allan Wittkopf for giving

permission to modify the Maple rifsimp package, and helpful discussions

on the modification of rifsimp and Maple implementation tips. Thanks

also to Dr. Edgardo Cheb-Terrab for his insights into the Maple subpack-

age PDEtools:-Symmetries.

I also would like to thank many of my teachers over the years, in partic-

ular Mary Hewett, Dr. Peter Brown, Prof. Robert Bartnik, John Mathews,

Dr. Judith Ascione, Dr. Shuangzhe Liu, Dr. Dat Tran, Robert Cox, A/Prof.

John Campbell, and A/Prof. Craig McDonald, who have made me become

a more skilled and knowledgeable person in Mathematics, Statistics, Soft-

ware Engineering, and research.

I wish to acknowledge the travel and conference support provided by

AMSI and PIMS.

On a personal note, I would like to thank my family for giving me the

opportunity and financial support to continue my study.

Last, I wish to express my deepest appreciation to all staff in the Faculty

of Information Sciences and Engineering at University of Canberra, for

wonderful discussions and encouragement at Friday technical meetings.

iv

Contents

1 Introduction 5

2 Symmetry Analysis of DEs 11

2.1 Symmetry Analysis . 13

2.1.1 Lie Point Symmetry Analysis 18

2.2 Symmetry Classification . 22

2.3 Equivalence Transformations 25

3 Computer Algebra in Symmetry Analysis 35

3.1 Symmetry Analysis Packages 36

3.2 Differential Reduction & Completion Algorithms 37

3.2.1 The RIF Algorithm . 41

3.3 Symmetry Classification Using RIF 51

3.3.1 Symmetry Classification Using Rifsimp 54

3.4 Results from Commutative Algebra 57

4 Invariance Checking from Determining Equations 61

4.1 Projection of Equivalence Group Action 62

4.2 Issues with Symmetry Condition 67

4.3 Invariance Using Determining Equations 72

4.4 Invariance Checking in Symmetry Classification 81

1

Contents

4.4.1 Label pivots from classification tree 82

4.4.2 Guide RIF during classification 88

5 Implementation of Invariance Checking Method 91

5.1 Required Implementations . 92

5.2 Symmetry Classification Package 95

5.2.1 Storage Structure for DE System 97

5.2.2 Pre-step methods . 99

5.2.3 Rifsimp with the ICM method 100

5.2.4 Display Procedure . 103

5.2.5 Front-end procedure 103

5.3 Examples . 104

5.3.1 1+1 Richards Equation 104

5.3.2 Linear Hyperbolic Equation with Laplace Invariants 110

6 Conclusion 115

References 121

A The SymmetryClassification Package 129

SymmetryClassification Overview 130

pdeRecord . 134

newPDESys . 141

detEqsForSymm . 144

detEqsForEquiv . 147

newProlongation . 150

AddInvtInfo . 156

SymmetricRifsimp . 159

CasePlot . 162

2

Contents

classifySymmetry . 168

B Published work arising from the thesis 173

3

Chapter 1

Introduction

Differential equations (DEs) arise in many areas of science and technology

such as physics, engineering and geometry. DEs are mathematically stud-

ied from several different perspectives, mostly are concerned with their

solutions. Only rarely are we able to find solutions of a DE in terms of finite

explicit formulas. But constructing such a solution can be a very important

step in understanding, especially for difficult non-linear problems. One of

the most powerful general approaches for constructing solutions for DEs

is to study their Lie group of symmetries [70].

For a system of DEs, if there is a point transformation which maps each

solution of DE to another solution then such a transformation is called

a symmetry. Knowing the symmetries of DEs can help us to do various

things such as studying the behaviour of the solution of DEs system, solv-

ing ordinary differential equation (ODE) system in formula [61], finding

similarity solutions of partial differential equation (PDE) system [5, chap.

4], etc. Furthermore, we can even use their symmetries to extract informa-

tion from DEs without having to solve them. Symmetry analysis for DEs

was started in 1870 by Sophus Lie [69], and Lie symmetry methods have

5

1. Introduction

since become a major tool for analysis of ODEs & PDEs [5, 47, 48]. There

are several symmetry methods which are applied to different purposes.

In this thesis, we will be dealing only with Lie point symmetries of a DE

system. Other symmetry methods (contact [5, chap. 5.2], generalised [47,

Chap. 5], Cartan, . . .) are similar.

A main idea of the symmetry analysis is to work ‘infinitesimally’ at the

level of ‘group operators’ or vector fields. Throughout this thesis, we will

be working entirely on the level of infinitesimals, not on groups.

Due to the fact that methods of symmetry analysis involve systematic

algebraic manipulation and tedious calculation, the method is well-suited

to computer algebra. A number of computer algebra packages for symme-

try analysis have been developed [13, 23, 63, 68]; and they have been used

as an important basis for analysing and solving DEs.

Computer algebra implementation for symmetry analysis started in

early 1980s, with early symmetry packages being specialised in symme-

try analysis only, their goal being to find the symmetries of DEs. Then

from about 1990, the development of symmetry analysis packages has sep-

arated the process into three parts: (1) finding determining equations of

DEs, (2) reducing these determining equations, and (3) solving these re-

duced determining equations (so we get the symmetries). The purpose

of Step 2 (reducing determining equations) is to simplify these determin-

ing equations so the chance of solving them is greatly increased. This is

where differential reduction and completion (DRC) methods [7, 40, 54] are in-

cluded in symmetry analysis. A DRC method is to help to reduce DEs into

a form which contains some information about the solution of DEs (we

call such a form ‘reduced form’); also methods might have a better chance

to solve DEs. (In symmetry analysis the DEs that the DRC method is ap-

6

1. Introduction

plied to are the determining equations.) Several DRC methods including

the RIF algorithm (reduced involutive form) [54], differential Gröbner ba-

sis [40] and Rosenfeld–Gröbner algorithm [7] have been implemented in

computer algebra systems such as Maple. These computer algebra pack-

ages have been widely used by users. For example, the Maple package

rifsimp, which uses RIF algorithm, has become the front-end procedure

before solving DEs [66, help on pdsolve,system].

In symmetry analysis, a DEs system can also be a ‘family’ of DEs which

involves arbitrary elements. These arbitrary elements can be constants

or functions, often representing physical properties such as wave speed,

diffusivity, etc. One is interested to see the behaviour for symmetries of

DEs with different conditions on arbitrary elements applied. In this case,

the problem of finding the symmetries of DEs system is called the symmetry

classification. Many DE systems have been classified. People have been

dealing with symmetry classification problem in several different ways

[48, 4, 18] but there is no clear best (systematic) way to classify symmetries

in all cases.

The symmetry classification problem can also been done by using DRC

methods such as RIF [54, 67]. We choose RIF to classify symmetries in this

thesis because it is robust and efficient, and this DRC method is imple-

mented in Maple. To ask RIF to classify symmetries, one needs to make

sure that all arbitrary elements are ranked lower than other variables [54],

so the classification is forced to split on DEs that only involve arbitrary el-

ements (these are the conditions on arbitrary elements mentioned above).

In a complete classification produced by RIF, the reduced form of the de-

termining equations in each case provides certain geometric information

about the symmetry group action, and this information can help us to

7

1. Introduction

analyse the symmetry group even before solving the determining equa-

tions [53, 54].

As well as symmetries, a family of DE systems usually has equivalence

transformations. These are transformations which map DEs to DEs in the

same family: only the arbitrary elements change ‘value’. The equivalence

transformations form a group called the equivalence group [48]. In the sym-

metry classification problem, the equivalence group can help to remove

parameters after classification. Therefore, it is desirable to keep equivalent

DEs in the same branch of classification tree. However, the DRC method

RIF, which we use to classify symmetries in this thesis, does not do sym-

metry classification in a very intelligent way, for example, the classification

tree does not respect the equivalence group, and the case splitting condi-

tions are not guaranteed to be invariant under action of the equivalence

group.

In this thesis, our objective is to help improve the way that the DRC

algorithm RIF can be used to classify symmetries such that the classifica-

tion respects the equivalence group. Our approach is to come up with a

way to assist RIF to select a case splitting DE which is ‘invariant’ under

the equivalence group action. We also challenge ourselves to make sure

that the entire classification process is working on the level of determin-

ing equations – of symmetries and of equivalence. This means there is no

need to know the explicit groups such as the equivalence group or sym-

metry group. Moreover, there is no need even to know the explicit vector

fields for symmetry and equivalence. Because of this, the whole process is

purely algorithmic, and we push ourselves a bit further to actually imple-

ment the method in computer algebra as a package for symmetry classifi-

cation.

8

1. Introduction

As a result in this thesis, we develop an invariance checking method

for testing invariance of given DEs under the action of some group. Then

we further apply this method to test invariance of case splitting DEs under

the equivalence group action in the classification using RIF. In order to

check invariance under the action of the equivalence group, we need the

equivalence group. But in our case, we use the determining equations of

the equivalence group instead of using the group itself. To do a better

job, we only need the determining equations for the equivalence which is

projected down to the space of arbitrary elements.

In order to show that we did achieve our objective, the whole process

of classifying symmetries using RIF and the method is implemented in the

computer algebra system Maple as a package. The idea of this implemen-

tation is to do the whole symmetry classification using the Maple function

rifsimp (which uses RIF) from a DE system given by a user. The package

includes some major implementations such as deriving the determining

equations for the equivalence group in the space of arbitrary elements,

providing the invariance checking method, and modifying rifsimp so it

can select invariant case splitting DEs during classification.

The rest of thesis is organised as follows. We first provide some needed

mathematical background and reviews in §2 and §3. In §2, we state some

mathematical background in the areas of symmetry analysis (in particu-

lar in Lie point symmetry analysis) and symmetry classification for DEs.

The steps of how to derive the determining equations for the equivalence

group are in §2.3. Then in §3, we give a general review of computer al-

gebra packages related to symmetry analysis and the DRC methods. In

this chapter we show how RIF works and we illustrate how to use RIF in

symmetry classification.

9

1. Introduction

In Chapter 4 we present the main results of the thesis. We describe

the development of the invariance checking method (i.e. how the method

only needs the determining equations), and how we apply the method

in symmetry classification. Some side discussion includes the method of

projecting the equivalence group to the space of arbitrary elements, and

why and how we develop an algebraic version of the symmetry condition

(§4.2). We provide a complete example of using RIF with the invariance

checking method to perform symmetry classification.

Chapter 5 describes the implementation of the method. This chapter

includes a list of tasks required which are based on the previous chapter.

We describe the design decisions of the package, and give a list of descrip-

tions on each function in the package. We also demonstrate the use of the

package by working some examples. The Maple help pages of the package

are included in Appendix A.

10

Chapter 2

Symmetry Analysis of

Differential Equations

Suppose we are considering a system E of DEs
{

f 1 = 0, f 2 = 0, . . . , f s = 0
}

where f ν(x, u, u(k)) involves n independent variables x = (x1, x2, . . . , xn),

m dependent variables u = (u1, u2, . . . , um), and u(k) = (u1, u2, . . . , uk)

are the derivatives of u up to order k. Let X = Rn, with coordinates x,

be the space denoting the independent variables, and let U = Rm, with

coordinates u, denote the dependent variables. The space X ×U is called

0-th order jet space, and is denoted by J0(X, U). The system E lives in the

k-th order jet space Jk(X, U) of the underlying space J0(X, U) [47, §2].

A multi-index I = [i1, i2, . . . , iq] with 1 ≤ iq ≤ n, 1 ≤ q ≤ k is intro-

duced to index partial derivatives. This multi-index I does not depend on

the order of i’s, and is used to define jet coordinates:

uj
I = uj

i1i2...iq (2.1)

which can be thought of as values of the partial derivatives
∂quj

∂xi1 · · · ∂xiq
.

11

2. Symmetry Analysis of DEs

We call q the order of I, denoted by |I|.

For example with I = [1, 1, 2] then |I| = 3, and

u1
112 = u1

121 = u1
211

(
= “

∂3u1

(∂x1)2
∂x2

”

)

The notation I, i from (2.1) denotes further differentiation:

uj
I,i =

∂uj
I

∂xi =
∂q+1uj

∂xi∂xi1 · · · ∂xiq
(2.2)

In this thesis, our aim is algebraic manipulation of DEs, and the coordi-

nates x, u, u(k) are treated as formal symbols which obey certain algebraic

rules. However, we continue to use notations like X×U where there is no

chance of confusion.

Definition 2.0.1 (Symmetry group). [47, §2.2] Let E be a system of DEs.

A symmetry group of the system E is a group of transformations G on the

space X × U of independent and dependent variables for the system in

such a way that G transforms every solution of E to another solution of E.

Some symmetries such as translation, scaling and rotation are found

commonly in DEs. For example, we would expect the wave equation to

have translation symmetries because the solution of the wave equation

does not depend on where the wave is started. Also in fluid flow, the

units of measurement should not change the behaviour of the solutions, it

shows that scaling symmetries are involved [9]. Therefore, any symmetry

can help to study the behaviour of solution of DEs.

Symmetries are widely used in

• solving ODE in formula [5, chap. 3]

12

2.1 Symmetry Analysis

• reducing PDE (e.g. to find similarity solutions) [5, chap. 4]

• mapping solutions to solutions (e.g. to solve certain boundary value

problems numerically [37, 62])

• solving mapping problems between different equations [5, chap. 4]

2.1 Symmetry Analysis

The method for finding symmetries of DEs was introduced in about 1870

by Sophus Lie (1842–1899), who pioneered the study of continuous trans-

formation groups that leave systems of DEs invariant [69]. Ever since, the

Lie symmetry method has become one of the major ways to analyse ordi-

nary and partial differential equations (ODEs/PDEs) [5, 47, 48]. The success

of Lie’s method is partly because it is able to find a symmetry of given DEs

systematically.

Lie’s method works ‘infinitesimally’, by considering tangent vector

fields X – that is, it works with vector fields rather than transformation

groups. Such an X assigns a tangent vector X|x at each point x ∈ Rn with

X|x varying smoothly from point to point. In local coordinates (x1, . . . , xn),

a vector field has the form

X|x = ξ1(x)
∂

∂x1 + ξ2(x)
∂

∂x2 + · · ·+ ξn(x)
∂

∂xn ,

where each ξ i(x) is a smooth function of x. The coefficients ξ i(x) of the

vector field X are called “infinitesimals” [28]. Let ψ(t; x) be a one-parameter

transformation group on Rn, then its infinitesimal generator is obtained by

13

2.1 Symmetry Analysis

differentiating at t = 0:

X|x =
d
dt

∣∣∣∣
t=0

ψ(t; x)

Moreover, x′ = ψ(t; x) is a solution of ODE initial value problem

dxi′

dt
= ξ i(x′), xi′(0) = xi, i = 1, . . . , n (2.3)

Strictly speaking this is only a local Lie transformation group. That

is, the group transformations are only defined in a neighbourhood of the

identity and act on a open set of X×U (independent and dependent vari-

ables of the DE system) [47, §1.2]. In this thesis, we will be entirely working

on the infinitesimals, so we don’t need to find the groups anyway.

For DEs we start with a vector field X = ∑n
i=1 ξ i ∂

∂xi + ∑m
j=1 η j ∂

∂uj on

J0(X, U). However we need to ‘prolong’ this vector field X to Jk(X, U),

that is to an action on the space of independent variables, dependent vari-

ables and derivatives up to order k.

Definition 2.1.1 (Total Derivative). Let P(x, u, u(k)) be a smooth function

on Jk(X, U). The i-th “total derivative” of P has the general form

DiP =
∂P
∂xi +

m

∑
j=1

k

∑
|I|=0

uj
I,i

∂P

∂uj
I

, (2.4)

where I = (i1, i2, . . . , iq).

Theorem 2.1.2 (Prolongation Formula). [47, §2.3] Suppose X is a vector field

on X×U of the form

X =
n

∑
i=1

ξ i ∂

∂xi +
m

∑
j=1

η j ∂

∂uj

14

2.1 Symmetry Analysis

where ξ i, η j depend on (x, u). The k-th prolongation of X (denoted by X(k)) will

be a vector field on the k-th order jet space Jk(X, U)

X(k) = X +
m

∑
j=1

k

∑
|I|=1

η
j
(I)

∂

∂uj
I

(2.5)

where η
j
(I) depends on (x, u, u(q)) with q = |I|. The coefficient function η

j
(I) of

X(k) can be found by the following recurrence:

η
j
(I,i) = Diη

j
(I) −

n

∑
l=1

(
Diξ

l
)

uj
I,l, (2.6)

and in particular

η
j
(i) = Diη

j −
n

∑
l=1

(
Diξ

l
)

uj
l

The following example illustrates the use of the prolongation formula.

Example 1. Consider a vector field X

X = ξ
∂

∂x
+ η

∂

∂y
.

on J0(R, R) where the independent variable is x and dependent variable

is y, and where ξ and η depend on (x, y). Second order jet space J2(R, R)

has coordinates (x, y, yx, yxx). From equation (2.5), the prolonged vector

field up to order 2 has the form

X(2) = X + η(x)
∂

∂yx
+ η(xx)

∂

∂yxx
. (2.7)

where η(x) depends on (x, y, yx) and η(xx) on (x, y, yx, yxx). The coefficients

15

2.1 Symmetry Analysis

η(x) and η(xx) can be found from recurrence relation (2.6):

η(x) =Dxη − yxDxξ

=
(
ηx + yxηy

)
− yx

(
ξx + yxξy

)
=ηx + yxηy − yxξx − y2

xξy

η(xx) =Dxη(x) − yxxDxξ

=
(

∂

∂x
+ yx

∂

∂y
+ yxx

∂

∂yx

)(
ηx + yxηy − yxξx − y2

xξy

)
− yxx

(
ξx + yxξy

)
=ηxx + 2yxηxy + y2

xηyy − yxξxx − 2y2
xξxy − y3

xξyy

+ yxx
(
ηy − 2ξx − 3yxξy

)
(2.8)

To describe the main theorem on the construction of symmetries of DEs

(Theorem 2.1.4 below), we need to state a maximal rank condition for the

system of differential equations.

Definition 2.1.3 (Maximal Rank Condition). Let E =
{

f 1, . . . , f s} be a

system of differential equations

f ν(x, u, u(k)) = 0, ν = 1, . . . , s (2.9)

The system is said to be of maximal rank if the Jacobian matrix

JacE(x, u, u(k)) =

(
∂ f ν

∂uj
I

)

of the system E with respect to all variables (u, u(k)) is of rank s on the

subset of Jk(X, U) defined by (2.9).

Theorem 2.1.4 below connects symmetry groups of a DE system with

16

2.1 Symmetry Analysis

the infinitesimal criterion of invariance under the prolonged infinitesimal

generator of the group.

Theorem 2.1.4 (Symmetry Sufficient Condition). [47, §2.3] Suppose

f ν(x, u, u(k)) = 0, ν = 1, . . . s

is a system of differential equations of maximal rank defined over X ×U. If G is

a transformation group acting on X×U, and

X(k)(f ν(x, u, u(k))) = 0, ν = 1, . . . , s (2.10)

whenever

f ν(x, u, u(k)) = 0, (2.11)

for every infinitesimal generator X of G, then G is a symmetry group of the

system.

Letting E =
{

f 1, . . . , f s}, we will write more briefly

X(k)E = 0, whenever E = 0

Note that if the DE system is written in a solved form with respect to

some subset of derivatives then the system automatically satisfies the max-

imal rank condition. However, this is not always enough for our purposes,

and we will return to this issue in §4.2.

There are several concepts of symmetry which serve different pur-

poses: classical Lie point symmetries, contact symmetries, and generalised

(‘Lie–Bäcklund’) symmetries. In this study, we consider Lie point symme-

tries only; the techniques for other symmetry methods are similar.

17

2.1 Symmetry Analysis

2.1.1 Lie Point Symmetry Analysis

Consider a system of differential equations

f ν(x, u, u(k)) = 0, ν = 1, . . . s (2.12)

A point transformation

x̃ = F(x, u), ũ = G(x, u)

is a symmetry of the DE system (2.12) if it maps each solution of (2.12)

to another solution (see Definition 2.0.1). The set of symmetries forms

a transformation group acting on X × U, called the symmetry group of

(2.12). Let the symmetry group have associated infinitesimal generator

X =
n

∑
i=1

ξ i ∂

∂xi +
m

∑
j=1

η j ∂

∂uj (2.13)

where ξ i and η j depend on x, u.

Our job is to determine the coefficients ξ i and η j (i.e. the infinitesimals)

such that (2.13) is a symmetry vector field of (2.12). To satisfy the symme-

try condition as stated in Theorem 2.1.4, the steps are as follows:

Step 1. Prolong the vector field X (2.13) up to order k. The prolonged

vector field X(k) has the form given in equation (2.5), and the coef-

ficients are found by recurrence (2.6).

Step 2. Apply vector field X(k) defined in (2.5) to the DEs (2.10) obtaining

X(k)E

18

2.1 Symmetry Analysis

Step 3. Restrict X(k)E to the subset where E = 0 in Jk(X, U) as stated in

condition (2.11)

X(k)E = 0 whenever E = 0

Step 4. Set the resulting expression for X(k)E to 0 and split equations by

powers of derivatives u(k). As a result we have a list of linear

homogeneous PDEs for ξ i and η j: we call them the determining

or defining equations for the infinitesimal symmetries of the DE

system [5, 9, 27].

Explicit forms for ξ i and η j can be found by solving the determining equa-

tions, either by hand or by using a symbolic computer algebra system

such as Maple. Finally, we substitute the infinitesimals into the vector

field X (2.13) to get the symmetry vector field of the DE system.

The following example demonstrates the Lie point symmetry method.

Example 2 (Second order ODE). Consider the simplest second order ODE

yxx = 0 (2.14)

where y is the dependent variable, and x the independent variable. Let the

associated vector field X be

X = ξ
∂

∂x
+ η

∂

∂y
(2.15)

where ξ and η depend on (x, y).

To meet the symmetry condition as described in Theorem 2.1.4, we

19

2.1 Symmetry Analysis

need to achieve

X(2)(yxx) = 0, whenever yxx = 0. (2.16)

We now can apply the steps described above:

Step 1. Prolong the vector field (2.15) up to order 2:

X(2) = ξ
∂

∂x
+ η

∂

∂y
+ η(x)

∂

∂yx
+ η(xx)

∂

∂yxx

where η(x), η(xx) are given by (2.8)

Step 2. Apply the vector field X(2) to the DE (2.14)

X(2)yxx = η(xx)

Step 3. Using the result of η(xx) from (2.8), restrict it to the surface E = 0

by substituting yxx = 0 into η(xx):

ηxx + 2yxηxy + y2
xηyy − yxξxx − 2y2

xξxy − y3
xξyy

Step 4. Set this to 0 and split equations by powers of yx. Now the symme-

try condition for the DE system (2.16) is given by the list of deter-

mining equations

ξxx = 0, 2ηxy − ξxx = 0, ηyy − 2ξxy = 0, −ξyy = 0

(2.17)

The determining equations for symmetries in this case are simple, so we

20

2.1 Symmetry Analysis

can easily solve for ξ and η by hand:

ξ(x, y) = a1xy + a2x2 + a3x + a4y + a0

η(x, y) = a1y2 + a2xy + b1x + b2y + b0

where a0, a1, a2, a3, a4, b0, b1, b2 are constants. Finally, the most general sym-

metry vector field of yxx = 0 is

X = (a1xy + a2x2 + a3x + a4y + a0)
∂

∂x
+ (a2xy + a1y2 + b1x + b2y + b0)

∂

∂y

Collecting vector fields with respect to the constants, defines a basis for

the vector space of infinitesimal generator of the transformation group:

xy
∂

∂x
+ y2 ∂

∂y
, x

∂

∂x
, y

∂

∂x
,

∂

∂x
,

x2 ∂

∂x
+ xy

∂

∂y
, x

∂

∂y
, y

∂

∂y
,

∂

∂y

For these basis vector fields, we can find the corresponding symmetry

transformations by solving the ODE initial value problem (2.3). For exam-

ple,

∂

∂x
→

x′ = x + c

y′ = y
(Translation symmetry of x)

x
∂

∂x
→

x′ = etx

y′ = y
(Scaling symmetry of x)

21

2.2 Symmetry Classification

x2 ∂

∂x
+ xy

∂

∂y
→


x′ =

x
1− sx

y′ =
y

1− sx

where c, t, s are constants.

Note that the last one-parameter group here is an example of a local

Lie group (see p.14) – the transformations are not defined for all s or for all

x.

In general, the difficulty of finding and solving symmetry determin-

ing equations of DEs increases rapidly as the numbers of independent and

dependent variables, and the order of DEs, increase. A differential reduc-

tion method (see §3.2) can help increase the chance of solving determining

equations of DEs.

2.2 Symmetry Classification

So far we have shown how to construct point symmetries of a DEs sys-

tem that only involves independent and dependent variables. However

symmetry analysis can also apply to a family of DEs, where the DEs sys-

tem contains “arbitrary elements”. These arbitrary elements can be either

functions or constants in the DEs system and usually represent physical

properties such diffusivity, wave speed, etc. The choice of arbitrary ele-

ment conditions determines a specific DE system within the family, and

one can investigate their symmetries. The problem of finding the symme-

tries of all the DE systems in a family is called ‘symmetry classification’ [48,

§6].

22

2.2 Symmetry Classification

Example 3. Consider the 1 + 1 nonlinear heat equation [28, §10.2],[48, §6.7]

ut + qx = 0,

q = −K(u)ux, where K 6= 0 (2.18)

Here the arbitrary element is the diffusivity function K(u). The symmetry

properties of (2.18) vary depending what form K(u) has. For instance, if

K(u) = 1 then we have ut − uxx = 0 (the linear heat equation), which has

infinitely many symmetries. But if K(u) is non-constant, the DE has only

finitely many symmetries.

Examples of symmetry classification for DEs have been collected up

to 1994 in the CRC Handbook of Lie Group Analysis of DEs [28]. The book

includes examples from areas such as heat flow, fluid dynamics, wave

propagation, diffusion, etc.: the ‘Body of Results’ in Part B of this book has

some 160 pages. Subsequently many more DE systems have been classified

[3, 4, 14, 21, 35, 38]. A survey of symmetry group classification of ODEs is

given by Mahomed [39].

Example 4. Referring back to Example 3, take the corresponding vector

field ξ ∂
∂x + τ ∂

∂t + η ∂
∂u + χ ∂

∂q where ξ, τ, η, χ depend on (x, t, u, q). Following

the steps as described in §2.1.1, we obtain the determining equations for

point symmetries of DE (2.18),

τq = 0, τu + ξq = 0, −ξx + τt − ηu + χq = 0,

qξq + Kηq = 0, qτu − Kτx = 0, Kηt − qχu + qξt + Kχx = 0,

Kηx −
q2

K
ξu − qηu + qξx + χ− q

Ku

K
η = 0 (2.19)

The determining equations (2.19) contain the arbitrary element K (dif-

23

2.2 Symmetry Classification

fusion coefficient from DE system (2.18)). As a result we expect the ‘un-

classified’ symmetry determining equations (2.19) will split into cases (de-

pending on K) as they are manipulated and solved.

The classification results are as follows:

• For arbitrary K(u) there are three symmetries:

∂

∂x
,

∂

∂t
, x

∂

∂x
+ 2t

∂

∂t
− ∂

∂q

In the following cases, additional symmetries are obtained:

• K(u) = eu,

x
∂

∂x
+ 2

∂

∂u
+ q

∂

∂q

• K(u) = ua with a 6= 0,−4
3 ,

a
2

x
∂

∂x
+ u

∂

∂u
+
(

1 +
a
2

)
q

∂

∂q

• K(u) = u−4/3,

−2
3

x
∂

∂x
+ u

∂

∂u
+

1
3

q
∂

∂q
, −x2 ∂

∂x
+ 3xu

∂

∂u
+
(

xq− 3u−1/3
) ∂

∂q

There is no unique way for classifying symmetries, and several meth-

ods for symmetry classification have been developed. The first method

started with Lie in 1881 [36]. Then Ovsyannikov [48] developed a modern

formulation of the method, the so called “Lie-Ovsyannikov method” [35, 48].

Using this method, Ovsyannikov was able to complete a number of non-

trivial symmetry classifications. However, for a DE system containing ar-

bitrary functions of several variables, the Lie-Ovsyannikov method can

24

2.3 Equivalence Transformations

lead to explosive computational difficulties. That is why most symme-

try classifications done by the Lie-Ovsyannikov method involve arbitrary

functions of one variable only [48].

Another line of investigation (e.g. [4, 21]) follows a method of Gagnon

and Winternitz [18], while the Cartan method of equivalence [20] gives

a completely geometric approach to certain problems. A number of pa-

pers slightly modify the method, for instance by involving the equivalence

group [8, 25].

Perhaps there is no single ‘best’ method for symmetry classification:

the candidates suffer variously from not being geometric, or not algorith-

mic, or being algorithmic but overwhelmed by expression swell on dif-

ficult problems, or of producing only partial results. Many papers use a

custom-built approach for the particular problem under consideration.

2.3 Equivalence Transformations

We now need to be more precise what we mean by a ‘family of DEs’.

Definition 2.3.1 (Family of DEs). Consider a system of DEs with arbitrary

elements A = (a1, a2, . . . , ar),

E =
{

f 1, . . . , f s
}

, where f ν(x, u, u(k), a) = 0, ν = 1, . . . , s (2.20)

where the arbitrary elements are a = a(x, u). The arbitrary elements may

be required to satisfy a constraint system,

C =
{

g1, . . . , gt
}

, where gµ(x, u, a, a(h)) = 0, µ = 1, . . . , t (2.21)

Such a system pair E and C is called a family of DEs.

25

2.3 Equivalence Transformations

Note carefully that systems (2.20) and (2.21) are of very different kinds.

In equation (2.20), the independent variables are x and dependent are u.

But in equation (2.21), the independent variables are x, u and dependent

are a. In particular, u is a dependent variable in DEs system (2.20) and an

independent variable in constraint system (2.21).

An example of a family of DEs has been given in Example 3.

In Definition 2.3.1 we have made two assumptions:

(i) Assume that the arbitrary elements a depend on (x, u) only.

(ii) Assume that the DEs depend on a only – not on derivatives of a.

Both these assumptions are easily relaxed, but this will be enough for

many purposes. Note that assumption (ii) can be easily worked around

by appending a constraint system.

Example 5. The nonlinear heat equation is ut =
(
K(u)ux

)
x or

ut = K(u)uxx +
dK
du

u2
x

which apparently violates (ii). But it can be easily rewritten as

ut = K(u)uxx + L(u)u2
x

with constraint system
dK
du

= L(u)

Definition 2.3.2 (Equivalence Transformation). For a given family of DEs

(Definition 2.3.1), an equivalence transformation is a point transformation

on X ×U × A (space of independent and dependent variables and arbi-

trary elements) for which

26

2.3 Equivalence Transformations

• Its prolongation (with respect to u(x)) leaves invariant the family of

equations (2.20)

• Its prolongation (with respect to a(x, u)) leaves invariant the con-

straint equations (2.21)

• It projects to a point transformation on X×U

This definition agrees with Ovsyannikov [48, §6.4] but we define it

more precisely.

Under the equivalence transformation, the form of DEs does not change

but the ‘value’ of the arbitrary elements may be transformed. Solutions

of the DEs can be mapped (i.e. one-to-one correspondence) through the

equivalence transformation.

Example 6. For the nonlinear heat equation (as shown in Example 3), we

have

X. . . space of independent variables, coordinates (x, t)

U. . . space of dependent variables, coordinates (u, q)

A. . . space of arbitrary elements, coordinates (K)

The following equivalence transformations are found:

x′ = ax + e, t′ = bt + f , u′ = cu + g, q′ =
ac
b

q, K′ =
a2

b
K (2.22)

where a, b, c, e, f , g are arbitrary constants, and abc 6= 0. This tells us that

the solution can be mapped by re-scaling or translating the variables t,

x, u. Under transformations (2.22), the nonlinear heat equation (2.18) is

mapped to an equation with the same form, but with the arbitrary element

27

2.3 Equivalence Transformations

K′(u′) where

K(u) =
b
a2 K′(cu + g).

The set of all equivalence transformations, for a given class of DEs,

forms a group known as the equivalence group [48, p.65]. Many equiv-

alence groups of DEs have been collected in the CRC Handbook [28] and

more have been found afterward [31, 19, 32]. The equivalence group can

be generalised in various ways (see e.g. Meleshko [45]) but the above is

enough for our purpose.

The idea for finding the equivalence transformations of DEs is as fol-

lows [28, 45].

We search for a one-parameter transformation group living in the space

X×U × A. The vector field has the form:

Y =
n

∑
i=1

ξ i ∂

∂xi +
m

∑
j=1

η j ∂

∂uj +
r

∑
l=1

αl ∂

∂al (2.23)

where ξ i, η j depend on (x, u), and αl depends on (x, u, a).

In order to find the equivalence transformation, both systems E (main

system (2.20)) and C (constraint system (2.21)) must be invariant. Due

to these systems depending on different variables, there are two different

processes of prolongation:

• For the main system E, we prolong Y to order k where independent

variables are x and dependent variables are u. The prolonged vector

field is denoted by Y(k,0):

Y(k,0) = Y +
n

∑
j=1

k

∑
|I|=1

η
j
(I)

∂

∂uj
I

28

2.3 Equivalence Transformations

• For the constraint system C, we prolong the same vector field Y to

order h instead, with independent variables (x, u) and dependent

variables a. The prolonged vector field is denoted by Y(0,h):

Y(0,h) = Y +
r

∑
l=1

h

∑
|L|=1

αl
(L)

∂

∂al
L

Using the infinitesimal techniques as stated in §2.1.1, we follow the

steps to find the equivalence group:

Step 1. Find the determining equations for the constraint system C. This

can be derived by using the steps from §2.1.1.

Step 2. In the main system E, apply the prolonged vector field Y(k,0) to the

DEs (2.20)

Y(k,0)E

Step 3. Reduce mod DE as stated in condition (2.11)

Y(k,0)E on the surface E = 0

Step 4. Set to 0 and split equations by powers of derivatives u(k). We now

obtain a list of linear homogeneous equations. Note that this is not

quite the determining equations for equivalence group yet.

Step 5. Append the determining equations for the constraint system (from

Step 1) into the list of DEs. Further split by the power of a since

ξ, η do not depend on a; only α depends on a. Now, we have a list

of determining equations for the infinitesimals of the equivalence

group.

29

2.3 Equivalence Transformations

Finally, by solving for the infinitesimals ξ, η and α we have the equivalence

group for the DEs system E.

Example 7. Apply the above to the nonlinear heat equation again (denoted

as NLH),

ut + qx = 0,

q = −K(u)ux, where K 6= 0 (2.24)

with the vector field

Y = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ χ

∂

∂q
+ κ

∂

∂K
(2.25)

where ξ, τ, η, χ depend on (x, t, u, q) and κ depends on (x, t, u, q, K). Since

K does not depend on x, t, q, we have the following constraint equations

Kx = 0, Kt = 0, Kq = 0 (2.26)

We need two prolongations of the vector field Y. First, prolong Y for

the main system (2.24) up to order 1

Y(1,0) = Y + η(x)
∂

∂ux
+ η(t)

∂

∂ut
+ χ(x)

∂

∂qx
+ χ(t)

∂

∂qt

where

η(x) = Dxη − uxDxξ − utDxτ

η(t) = Dtη − uxDtξ − utDtτ

χ(x) = Dxχ− qxDxξ − qtDxτ

χ(t) = Dtχ− qxDtξ − qtDtτ (2.27)

30

2.3 Equivalence Transformations

and Dx, Dt are total derivatives

Dx =
∂

∂x
+ ux

∂

∂u
+ qx

∂

∂q

Dt =
∂

∂t
+ ut

∂

∂u
+ qt

∂

∂q

Second, prolong Y for the constraint system (2.26) up to order 1

Y(0,1) = Y + α(x)
∂

∂Kx
+ α(t)

∂

∂Kt
+ α(u)

∂

∂Ku
+ α(q)

∂

∂Kq

where

α(x) = D̃xα− KxD̃xξ − KtD̃xτ − KuD̃xη − KqD̃xχ

α(t) = D̃tα− KxD̃tξ − KtD̃tτ − KuD̃tη − KqD̃tχ

α(u) = D̃uα− KxD̃uξ − KtD̃uτ − KuD̃uη − KqD̃uχ

α(q) = D̃qα− KxD̃qξ − KtD̃qτ − KuD̃qη − KqD̃qχ (2.28)

and D̃x, D̃t, D̃u, D̃q are total derivatives

D̃x =
∂

∂x
+ Kx

∂

∂K
, D̃t =

∂

∂t
+ Kt

∂

∂K
,

D̃u =
∂

∂u
+ Ku

∂

∂K
, D̃q =

∂

∂q
+ Kq

∂

∂K

To find the equivalence group for NLH, we follow the steps (p.29):

Step 1. Apply Y(0,1) to the constraint equations (2.26): we obtain the fol-

lowing determining equations

κx = 0, κt = 0, κq = 0,

ηx = 0, ηt = 0, ηq = 0 (2.29)

31

2.3 Equivalence Transformations

Step 2. Apply the prolonged vector field Y(1,0) to the NLH system (2.24),

Y(1,0) (ut + qx) = η(t) + χ(x)

Y(1,0) (q + Kux) = χ + Kη(x) + uxκ

where η(t), χ(x), η(x) are given by (2.27).

Step 3. Restrict to surface NLH by substituting ut = −qx, ux = −q/K to

get

qx(−ηu + τt + χq − ξx) + qt

(q
K

(ξq + τu)− τx

)
+q2

x(−τu − ξq) +
q
K

(ξt − χu) + χx = 0

qx(qξq + Kτx − qτu) + q2
x(Kτq) + χ− qηu + qξx

−q2

K
ξu −

q
K

κ = 0

Step 4. Set it to 0 then split them by powers of qx, qt to get determining

equations:

Kχ− Kqηu + Kqξx − q2ξu − qκ = 0, τu + ξq = 0,

−ηu + τt + χq − ξx = 0, qξq = 0,

qξt + Kχx − qχu = 0, τq = 0,

Kτx − qτu = 0

Step 5. Append (2.29) which we derived earlier into the list of DEs. Fur-

ther split by powers of K. Now we have a list of determining equa-

32

2.3 Equivalence Transformations

tions for the infinitesimals of the equivalence group:

ξxx = 0, τx = 0, ηx = 0, χx = 0,

ξt = 0, τu = 0, ηt = 0, χt = 0,

ξu = 0, τq = 0, ηq = 0, χu = 0,

ξq = 0, τtt = 0, ηu = −ξx + τt + 1
q χ, χq = 1

q χ,

κ = K (2ξx − τt)

Finally solving the determining equations for equivalence group and

collecting vector fields respect to the constants, we have the following

equivalence vector fields:

∂

∂x
,

∂

∂t
, x

∂

∂x
+ 2t

∂

∂t
− q

∂

∂q
,

∂

∂u
, u

∂

∂u
+ q

∂

∂q
, x

∂

∂x
+ t

∂

∂t
+ K

∂

∂K

The first three are symmetries, they apply to all nonlinear heat equa-

tions (2.18) and have trivial action on K(u). It is really the other ones that

are of interest.

The equivalence group is very useful in group classification because it

can help to remove parameters when classifying symmetries. For exam-

ple, the CRC Handbook [28] systematically uses the equivalence group to

remove parameters and simplify the form of the symmetry classification.

In addition, some symmetry classification methods have used the equiva-

lence transformation as part of their process during classification [4, 8, 25].

For DEs connected by an equivalence transformation, their symmetry

groups are identical apart from a change of coordinates. Therefore, all

equations that are equivalent should be together in a symmetry classifica-

33

2.3 Equivalence Transformations

tion. In other words, good criteria for splitting cases should therefore be

invariant under the transformations of the equivalence group. We will use

this fundamental observation in developing new methods in Chapter 4.

34

Chapter 3

Computer Algebra in Symmetry

Analysis

Now that we have covered the background on symmetry analysis in §2,

we understand that symmetry analysis contains systematic algebraic ma-

nipulations and involves tedious calculation. The complexity of expres-

sions increases rapidly as the numbers of independent and dependent

variables and arbitrary elements increase, and as the order of the DE sys-

tem increases. Therefore, computer algebra is in fact well-suited for do-

ing symmetry analysis. As a result, the computer algebra community has

been using symmetry methods as an important basis for solving DEs [66].

For example, some popular computer algebra systems such as Maple and

Mathematica include package(s) that provide a suite of symmetry meth-

ods. And many more symmetry analysis programs have been produced

for their own purpose.

35

3.1 Symmetry Analysis Packages

3.1 Symmetry Analysis Packages

Computer algebra implementations for symmetry analysis started in the

early 1980s. Schwarz’s REDUCE package SPDE [58] derives and often suc-

cessfully solves the determining equations for Lie point symmetries with

minimal intervention by the user. Another REDUCE program NUSY by

Nucci [29, chap. 14] also generates the determining equations for Lie point,

generalised (‘Lie-Bäcklund’) and approximate symmetries, and then it pro-

vides interactive tools to solve them. Head [22] introduced a muMath pro-

gram LIE, a program which can do many different types of symmetry anal-

ysis and also can compute the Lie vectors and their commutators. Due

to the limitations of muMath, the program LIE is bounded by the 256 KB

of memory for program and workspace. Thus, for a program with lim-

ited size, LIE is indeed remarkable in its achievement. Another package

called SYMMGRP.MAX [12] by Champagne et al. allows the calculation of

symmetry groups of arbitrarily large and complicated systems of DEs on

relatively small computers. However, these packages/programs are spe-

cialised in symmetry analysis only, their purpose is to find symmetries of

DEs (i.e. find and solve determining equations of DEs system).

In around 1990, Schwarz [57, 60], Reid [51, 52] and others began to

change the implementations for symmetry analysis, separating the process

into three parts (as shown in figure 3.1): (i) derive determining equations,

(ii) reduce them, and (iii) solve them whenever possible.

The process of finding the determining equations can be easily done

by tools such as LIESYMM by Carminati [10] et al. in Maple and PDELIE

by Vafeades [65] in REDUCE. Now, steps (ii) and (iii) are done by general

purpose computer algebra packages, which are not specific to symmetry

analysis at all. Solving the determining equations is highly dependent

36

3.2 Differential Reduction & Completion Algorithms

A system of DEs

Determining
Equations

Standard Form

Symmetries of DEs

(i) Derive det. eqs.

(ii) Reduce and complete

(iii) Solve

Figure 3.1: Steps for symmetry analysis. From a system of DEs, we (i) find
the defining equations, (ii) reduce and complete them, and then (iii) solve
them. The solutions are the symmetries of DEs.

on the complexity of the determining equations themselves. Therefore,

simplifying the determining equations (“reduction” step) becomes a key

part in symmetry analysis. More information reviewing computer algebra

software for symmetry analysis can be found in [23, 24].

3.2 Differential Reduction & Completion Algo-

rithms

A differential reduction & completion (DRC) algorithm is a method for

simplifying polynomially nonlinear DEs to give a better chance of solving

them. It reduces DEs to a certain form (which will be referred as ‘standard

form’ in this thesis) that contains all the integrability conditions. Here is a

summary of the advantages of using a DRC algorithm:

• Reducing the complexity of the DE system.

37

3.2 Differential Reduction & Completion Algorithms

• Better chance to solve DE system.

• Extracting information from a system of DEs (such as the count of its

solutions) instead of solving it.

The kernel of a DRC algorithm is reducing a DE system to a form

where a local analytic existence-uniqueness (E-U) theorem can be applied

to count solutions and extract other information without solving DEs. Some

examples of E-U theories are:

• Cauchy–Kovalevskaya theory [55]: Show that certain terms in a power

series can be specified freely, with all others determined by the DEs,

and show the power series converges with positive radius of conver-

gence.

• Cartan–Kähler theory [33]: A geometric theory using differential forms.

• Riquier–Janet theory [57]: Relies on isolating a derivative in each DEs,

and is algorithmic only for linear PDEs.

These E-U theorems can be categorised into two types: geometric (e.g.

Cartan–Kähler theory) and algebraic (e.g. Riquier–Janet theory). Some DRC

algorithms like Cartan–Kuranishi [34] use geometric E-U theorems. How-

ever, an algebraic E-U theory, Riquier–Janet theory, is a common departure

point for ‘nonlinear’ DRC methods such as differential Gröbner basis [11],

Rosenfeld–Gröbner [7], and RIF [54, 67].

The development of DRC algorithms and implementation of packages

were started in about 1990. Schwarz designed an algorithm INVOLU-

TIONSYSTEM [59, 60] which is based on the theory of Riquier and Janet.

This DRC algorithm is to transform a linear system of PDEs into invo-

lutive form, it also may be applied repeatedly to determine a universal

38

3.2 Differential Reduction & Completion Algorithms

Gröbner basis [40]. Furthermore, INVOLUTIONSYSTEM is able to deter-

mine the size of a Lie symmetry group without having to integrate the

determining equations.

Mansfield developed a “differential” generalization of Buchberger’s

algorithm for Gröbner basis to find a differential Gröbner basis [40] (DGB

for short) for the differential ideal generated by the DEs. However, there

are a few technical difficulties to ensure termination. The KOLCHIN-RITT

algorithm for DGB was implemented into a Maple package called DIF-

FGROB2 [40, 41, 42, 44]. If an expression is found in which the highest

derivative term occurs in a factor raised to a power (i.e. differential ideal

is non-radical) then the DGB method may fail [43, 44].

A REDUCE program called CRACK, developed by Wolf and Brand [68],

uses the idea of Gröbner basis. This program attempts the solution of an

overdetermined system of ODEs or PDEs with at most polynomial nonlin-

earities. Even if the DEs system is not solved, it may be possible to find

analytic properties of solutions directly from the DEs.

A different REDUCE package DIMSYM by Sherring and Prince [64] was

inspired by Head’s program LIE, but is larger and further developed.

DIMSYM can bring the determining equations to normal form and also

works for systems of linear homogeneous DEs (not necessarily obtained

from symmetry analysis). Furthermore, this program can find various

types of symmetries, isolate special cases, etc.

The Rosenfeld–Gröbner algorithm decomposes the radical differential

ideal generated by a set of algebraic DEs into ‘characterisable components’

[7]. Various improvements of the Rosenfeld–Gröbner algorithm have been

proposed in [7]. They all avoid the factorization problem (a.k.a. factoriza-

tion free). This algorithm is the first decomposition algorithm in differen-

39

3.2 Differential Reduction & Completion Algorithms

tial algebra that has been actually implemented up to our knowledge – it

forms an integral part of diffalg package in Maple. A more efficient im-

plementation of the algorithm in C language by F. Boulier can be found at

http://www.lifl.fr/~boulier/BLAD/.

The RIF algorithm is the DRC algorithm which we will be using in this

thesis. The development history of RIF algorithm started from Reid’s algo-

rithm STANDARD FORM [50, 52]. This algorithm has its roots in the classi-

cal Riquier–Janet theory. Instead of using the monomials of Riquier-Janet

theory, it uses an equivalence class approach to avoid creating redundant

equations and to provide a standard form of the systems to which it is

applied. The STANDARD FORM starts with a system of DEs and a ma-

trix which gives a complete ranking on the derivatives appearing in the

system. Then the DEs system will be reduced until it has all integrabil-

ity conditions included and no more differential/algebra redundancies.

In [50, 53], Reid et al. showed that structure constants Ck
i,j of a Lie sym-

metry algebra can be found from the standard form of the determining

equations without solving them.

Reid and McKinnon extend Reid’s STANDARD FORM algorithm and

build a recursive algorithm called RSOLVE PDESYS which can find par-

ticular solutions of a linear system of PDEs using only ODE solution tech-

niques.

Later, an improved algorithm was developed by Reid et al. [54, 67]

which combines features of geometric involutive form algorithms and the

STANDARD FORM algorithm. This algorithm uses a finite number of dif-

ferentiation and algebraic operations to simplify any analytic nonlinear

system of DEs to a ‘reduced involutive form’ (RIF). The RIF form (i.e. stan-

dard form made by RIF) contains the integrability condition of the system,

40

http://www.lifl.fr/~boulier/BLAD/

3.2 Differential Reduction & Completion Algorithms

such that at a point where a constant rank condition is satisfied, one can

pose initial data that uniquely specifies a formal power series solution of

the DEs.

A Maple package rifsimp, which was built by Wittkopf [67], uses the

RIF algorithm. Rifsimp is a powerful, robust and efficient program. It

contains a large number of user options such as rankings, case splits,. . . ,

etc. Rifsimp has therefore become one of the most widely used package

for Maple users. In fact, Maple’s pdsolve command [66, help on DEtools],

which is the most commonly used package for solving DEs, calls rifsimp

as a front end to reduce DEs before solving them. In this thesis, we use

rifsimp and the RIF algorithm to classify symmetries, and therefore RIF is

described in more detail in §3.2.1.

In conclusion, DRC algorithms become the major step for solving/-

analysing DEs. Some widely used DRC algorithms such as differential

Gröbner Basis, Rosenfeld–Gröbner, and RIF have been implemented into

computer algebra systems, and they have been widely used by users. As

example of performing symmetry analysis in Maple, we could first use

LIESYMM to derive the determining equations of DEs; then we perform

rifsimp to reduce them into RIF form, from which we can extract some in-

formation about the DEs; and finally we solve the determining equations

using pdsolve (i.e. a function for solving DEs) [66, help on DEtools].

3.2.1 The RIF Algorithm

The RIF algorithm is a DRC algorithm for simplifying analytic systems of

nonlinear PDEs to a form which can be easily transformed into an invo-

lutive form. Such a form is called “reduced involutive form” (referred to

as RIF form) [54]. There are some nice features in the RIF algorithm. First,

41

3.2 Differential Reduction & Completion Algorithms

the algorithm does terminate in finitely many steps [56]. Second, it only

involves differentiation and elimination, no integration is involved dur-

ing the process. Moreover, the result of the RIF process, RIF form, contains

geometric properties of PDE systems, such as the dimension of the solu-

tion space of the system. Even though RIF form is coordinate-dependent,

it can be easily transformed into a system which has involutive geometric

properties. From RIF form it is also possible to specify local initial value

problems and implicitly determine Taylor series expansions of the solu-

tions which satisfy these initial value problems.

RIF was developed by Reid et al. [54, 67]; the algorithm is based on

previous work from Reid’s STANDARD FORM (which is based on Riquier-

Janet theorem) [52]. The RIF algorithm uses STANDARD FORM for linear

systems (i.e. Riquier-Janet theorem) and there are further extensions to the

nonlinear case. The RIF algorithm was implemented as a Maple package

called rifsimp [54], and it was later improved by Wittkopf [67]. Rifsimp

has been widely used for simplifying DE system, especially in symmetry

analysis, where the algorithm RIF is able to reduce the determining equa-

tions of DEs system (i.e. linear homogeneous system) into a simpler form

which can count the number of symmetries of the system.

The use of ranking is a crucial aspect in the RIF algorithm (as in all

algebraic DRC methods). The ranking is defined on the set of derivatives

of dependent variables from a given DE system. To set a ranking in the RIF

algorithm, the following conditions need to be met:

• The ranking is a total ordering (satisfies transitivity and trichotomy).

• For all I, J, L, symmetric multi-indices on {1, . . . , n},

uk
I < uk

J =⇒ uk
IL < uk

JL

42

3.2 Differential Reduction & Completion Algorithms

for all |L| ≥ 0.

• For symmetric multi-indices H on {1, . . . , n},

uk < uk
H

for all |H| ≥ 1.

The role of these ranking properties in ensuring termination of RIF is de-

scribed in [56].

The highest ranked derivative occurring in a given DE is called the lead-

ing derivative (or leader) of the equation. The DEs can then be split into two

categories: those whose leading derivative occurs linearly (the ‘leading

linear’ PDEs) and the remaining ones (the ‘leading nonlinear’ PDEs). A

critical fact for RIF is that differentiation of any leading nonlinear PDE will

yield leading linear ones.

Example 8. Consider the following DEs

ηt − uηx − ηxxx = 0, ξxx − ξxu = 0, −3ξx + τt = 0 (3.1)

where ξ, τ, η depend on (x, t, u). We can set the ranking of two derivatives

uj
I and ul

J to be as follows:

1. Rank by order of derivative: if |I| < |J| then uj
I < ul

J .

2. If order of derivative is equal then break ties according to which

dependent variables are present: η < τ < ξ.

3. If still tied then break ties lexicographically by u < t < x.

43

3.2 Differential Reduction & Completion Algorithms

The DEs (3.1) can be re-written as follows:

ηxxx = −ηt + uηx, ξxx = ξxu, ξx = 1
3 τt

where ηxxx, ξxx, ξx are leading derivatives, as specified by the given rank-

ing.

For the case of linear PDE systems, the process of the RIF algorithm

consists of three kinds of operations. We will explain these via simple

examples.

Operation 1. Reduce a system of DEs modulo an equation. For example, let E

be a DEs system

ξxx = ξx + η, ξxt = 2τx + τt, ξxu = uτx

To reduce E modulo the given equation τx = 0, we substitute

for τx, replacing it by 0 in E.The system is reduced to

ξxx = ξx + η, ξxt = τt, ξxu = 0

Operation 2. Prolong an equation by differentiating. For example, consider

the equation

τx = ξ + η

Differentiating with respect to x gives

τxx = ξx + ηx

Operation 3. Form integrability conditions between two equations. For exam-

44

3.2 Differential Reduction & Completion Algorithms

ple, consider these two equations A, B

A : ξx = τt, B : ξt = η − τ

where ξx, ξt are leading derivatives. Forming the integrabil-

ity condition of A and B amounts to equating mixed partials

(ξxt = ξtx):

∂

∂t
(τt) =

∂

∂x
(η − τ)

τtt = ηx − τx (3.2)

So, a new equation (3.2) has been found by forming the in-

tegrability condition. This new equation may or may not

contain new information.

Before we describe the steps of the RIF algorithm,we need the following

definition.

Definition 3.2.1 (Reduced orthonomic form). A system of DEs E is in re-

duced orthonomic form if

i Each leading derivative in E appears only once in E

ii No nontrivial derivative of any leading derivative appears in E

The steps of the RIF algorithm with a choice of ranking for a ‘linear’

PDE system are as follows:

Step 1. Set up a PDE system in reduced orthonomic form, denoted as S.

Step 2. Form the integrability conditions on all pairs of equations in S

(Operation 3). New equations found here are denoted as I.

45

3.2 Differential Reduction & Completion Algorithms

Step 3. Where I involves a derivative uj
IL of a leader uj

I from S, prolong

the equation from S by computing its L-th derivative (Operation

2). Let K denote the system S with these new prolonged equations

appended.

Step 4. Reduce I modulo K (Operation 1), we denote these reduced equa-

tions by R.

Step 5. If R is empty then finish. Otherwise, append R to S and repeat

Step 1 to Step 5 again.

Once the process of RIF is finished, the final form is “fully reduced and

completed” and referred as completed form or rif form. The steps only

involve differentiation and substitution.

In the following example, we are going to show how RIF reduces a list

of equations into a completed form with specified ranking.

Example 9. Consider a list of linear homogeneous equations

ξx −
1
3

τt = 0, τx = 0, ηuu = 0, −ηt + uηx + ηxxx = 0,

ξu = 0, τu = 0, ηxu = 0, 3ηxxu + η + ξt +
2
3

uτt = 0 (3.3)

where ξ, τ, η depend on (x, t, u).

These equations are in fact the determining equations for point symme-

tries of the KdV equation ut = uxxx + uux. We set ranking of two deriva-

tives uj
I and ul

J as follows:

1. Rank by order of derivative: if |I| < |J| then uj
I < ul

J .

2. If order of derivative is equal then break ties according to which

dependent variables are present: η < τ < ξ.

46

3.2 Differential Reduction & Completion Algorithms

3. If still tied then break ties lexicographically by u < t < x.

Now we execute the RIF algorithm,

Step 1. Put equations (3.3) into orthonomic form, denoted by S,

ξx =
1
3

τt, τx = 0, ηuu = 0, ηxxx = ηt − uηx,

ξu = 0, τu = 0, ηxu = 0, ηxxu = −1
3

η − 1
3

ξt −
2
9

uτt

Step 2. Form the integrability conditions on all pairs of DEs in S. Some

new equations are found by forming the integrability conditions.

For example, the first and fifth equations ξx = 1
3 τt, ξu = 0 give

∂

∂u
(

1
3

τt) =
∂

∂x
(0)

=⇒ 1
3

τut = 0

Similarly the fourth (ηxxx) and eighth (ηxxu) equations give

∂

∂u
(ηt − uηx) =

∂

∂x

(
−1

3
η − 1

3
ξt −

2
9

uτt

)
=⇒ ηut − ηx − uηxu = −1

3
ηx −

1
3

ξxt −
2
9

uτxt

=⇒ ηut −
2
3

ηx − uηxu +
1
3

ξxt +
2
9

uτxt = 0

Altogether there are 8 integrability conditions to form, of which

two are trivial, the other 6 are:

1
3

τut = 0, 3ηu + 3ξut + 2τt + 2uτut = 0,

ηut − uηxu − ηx = 0, ηuut − uηxuu − 2ηxu = 0,

47

3.2 Differential Reduction & Completion Algorithms

−1
3

η − 1
3

ξt −
2
9

uτt = 0, ηut −
2
3

ηx − uηxu +
1
3

ξxt −
2
9

uτxt = 0

These equations are denoted as I.

Step 3. The system I involves the following derivatives:

{ξut, ξt, ξxt, τut, τt, τxt, ηu, ηut, ηxu, ηx, ηuut, ηxuu, η}

Of these, the following are derivatives of leaders from S:

{ξt, ξut, ξxt, τut, ηxu, ηxuu}

The needed prolongations of equations from S are therefore:

ξut = 0, ξxt =
1
3

τtt, τut = 0, τxt = 0,

ηuut = 0, ηxuu = 0 (3.4)

Step 4. Reduce I modulo equations (S+(3.4)). Several equations have re-

duced to triviality (i.e. 0 = 0), the remaining reduced equations R

are

3ηu + 2τt = 0, ηut − ηx = 0, ηut −
2
3

ηx +
1
9

τtt = 0

Step 5. Because R is not empty, we need to append R to S and repeat Step

1 to 5 again.

We repeat Step 1 to 5 until R is empty (i.e. no more new equations are

found in Step 4). Once it finishes, the final updated S is fully reduced and

48

3.2 Differential Reduction & Completion Algorithms

completed. The fully reduced and completed RIF form is:

ξx = −1
2

ηu τx = 0 ηx = 0

ξt = −η + uηu τt = −3
2

ηu ηt = 0

ξu = 0 τu = 0 ηuu = 0

For using RIF in symmetry classification in §3.3, there are two kinds of

dependent variables which need to be treated differently. For this purpose

we need to use the idea of block elimination ranking.

For a block ranking, we partition dependent variables u into two dis-

joint classes u = (v, w), where all derivatives of v are ranked lower than

w: we write v � w. Then RIF gives a nice partition of the equations. In

particular, the low ranked variables v satisfy their own sub-system which

means the high-ranked variables w have been eliminated.

Example 10. Consider the same list of linear homogeneous equations we

used in Example 9,

ξx −
1
3

τt = 0, τx = 0, ηuu = 0, −ηt + uηx + ηxxx = 0,

ξu = 0, τu = 0, ηxu = 0, 3ηxxu + η + ξt +
2
3

uτt = 0 (3.5)

where ξ, τ, η depend on (x, t, u). This time we specify a block ranking in

which

1. {η} � {ξ, τ}

This means that all derivatives of η are ranked lower than all derivatives

of ξ, τ. Then we complete the ranking as follows:

2. Rank by order of derivative: if |I| < |J| then uj
I < ul

J .

49

3.2 Differential Reduction & Completion Algorithms

3. If order of derivative is equal then break ties according to which

dependent variables are present: ξ < τ.

4. If still tied then break ties lexicographically by u < t < x.

The completed and reduced RIF form is as follows:

ξx = −1
2

ηu, ξt = −η + uηu, ξu = 0, (3.6a)

τx = 0, τt = −3
2

ηu, τu = 0, (3.6b)

ηx = 0, ηt = 0, ηuu = 0 (3.6c)

The equations (3.6a) and (3.6b) contain ξ, τ, η, whereas equations (3.6c)

only contain η, which is a subsystem to itself.

For the case of a nonlinear PDE system, the RIF algorithm contains

two more outer loops: ‘constant rank loop’ and ‘spawning loop’. More

detail on the RIF algorithm for the nonlinear case can be found in [67]. An

important feature for nonlinear PDE is that there can be a need to split into

cases. For example, consider a nonlinear ODE (Clairaut equation)

y2
x + xyx − y = 0

where y depends on x. Using RIF gives splits on

Case 1. If 2yx + x 6= 0 then yxx = 0. (With a constraint y2
x + xyx − y = 0.)

Case 2. If 2yx + x = 0 then y = −1
4 x2.

A practical implementation of RIF may process a system of DEs in a

different sequence for efficiency reasons. For example, it may initially

work on a subset of the equations, and leaving some parts of the system

50

3.3 Symmetry Classification Using RIF

as ‘unclassified’ to defer until later. As long as all equations are eventually

dealt with then the algorithm still works.

3.3 Symmetry Classification Using RIF

Recalling the symmetry classification problem as described in §2.2, the

determining equations for symmetry of the DEs system are often large,

complicated and overdetermined. We can use a DRC method such as RIF

to reduce complexity of the determining equations so that it is more likely

we can solve them and find the infinitesimals. Moreover, if a system of DEs

involves arbitrary elements, using RIF is one way to classify symmetries in

a systematic way.

Figure 3.2 shows how the RIF algorithm is applied to symmetry classi-

fication problems.

For a system of DEs which involves arbitrary elements, there are two

types of dependent variables in the determining equations: the arbitrary

elements and the infinitesimals. If we use RIF to classify symmetries for such

a system then we need to make sure RIF selects splitting conditions which

only involve arbitrary elements. Therefore, an elimination ranking needs

to be set in a form where all derivatives of all arbitrary elements are ranked

lower then infinitesimals:

{all arbitrary elements} � {all infinitesimals}.

With this ranking we can be sure that the leading derivatives of determin-

ing equations are infinitesimals. The coefficients of these leading deriva-

tives only involve arbitrary elements so are guaranteed to split on arbi-

trary elements only.

51

3.3 Symmetry Classification Using RIF

Figure 3.2: Steps for using RIF for classifying symmetries (when there exist
an arbitrary element in a system of DEs)

Note that this type of elimination ranking is called block elimination

ranking, see §3.2.1 for more detail. We shall demonstrate the block elim-

ination ranking to perform symmetry classification.

Example 11. For the nonlinear heat equation (2.18) with the assumption

that K 6= 0, the determining equations for point symmetries (as listed in

example 4) contains the following variables:

• arbitrary element: K

• infinitesimal generators: ξ, τ, η, χ

We need to make sure that K is ranked lower than other variables; there-

fore, we must specify a ranking for which

1. {K} � {ξ, τ, η, χ}

52

3.3 Symmetry Classification Using RIF

To complete the ranking we choose for {ξ, τ, η, χ}, the ranking of two

derivatives uj
I and ul

J as follows:

2. Rank {ξ, τ, η} � {χ}

3. If tied, rank by order of derivative: if |I| < |J| then uj
I < ul

J .

4. If order of derivative is equal then break ties according to which

dependent variables are present: ξ < τ < η.

5. If still tied then break ties lexicographically by x < t < u < q.

Consider again the determining equations (2.19). Using the ranking

above, we can further reduce these determining equations to

ξu = ξq = τx = τu = τq = ηuu = ηq = 0, ξxx =
1
2

Ku

K
ηx,

τt = 2ξx −
Ku

K
η, ηxx =

1
K

ηt, ηxu = −3
4

Ku

K
ηx −

1
2

1
K

ξt,

χ = −Kηx + qηu − qξx + q
Ku

K
η,

Ku

K
ηu +

(
Ku

K

)
u

η = 0 (3.7)

Selecting the last equation from (3.7), the leading derivative is ηu. There-

fore there is a case split on Ku. In this thesis, we will refer to these expres-

sions as ‘pivots’. In this case, the pivot Ku causes the system to split into

two branches:

• If Ku = 0 then we can’t solve for ηu. This sub-branch is the linear

heat equation.

• If Ku 6= 0 then we can solve for ηu. After further reduction, a new

equation (
K
Ku

)
uu

η = 0 (3.8)

is discovered.

53

3.3 Symmetry Classification Using RIF

The determining equations from branch Ku 6= 0 can be split further. This

time, from Eq. (3.8), the leading derivative is η, so our next choice of pivot

is
(

K
Ku

)
uu

. The equations can keep splitting until no more splittings can be

made, and then the classification is complete.

3.3.1 Symmetry Classification Using Rifsimp

The RIF algorithm is implemented in Maple as a computer algebra pack-

age called rifsimp. The package rifsimp is one of the most widely used

packages for classification problems in Maple. It provides a large amount

of useful functionality for users such as control of ranking, case splittings

etc. In this section, we will illustrate with the previous example (Exam-

ple 11) to show how to use rifsimp to classify symmetries.

Example 12. To classify symmetries using rifsimp, one requires the deter-

mining equations for point symmetries and a ranking. We first use the

determining equations we derived earlier in Example 4 (or using a Maple

command PDEtools:-DeterminingPDE [66, help on DeterminingPDE]) with

specified ranking shown on p.52. Assume the DEtools package is loaded

in Maple worksheet (i.e. with(DEtools);), and that we have assigned a

list of the determining equations as detEqs. We type the command in a

Maple worksheet:

rifOutput:=rifsimp(detEqs,[[chi],[eta, xi, tau],[K]],casesplit);

where

detEqs = list of determining equations for symmetries

[[chi],[eta, xi, tau],[K]] = {K} � {η, ξ, τ} � {χ} (ranking)

54

3.3 Symmetry Classification Using RIF

casesplit = indicate to perform classification

rifOutput = results from rifsimp

Here, we need to specify casesplit so rifsimp knows to split into multi-

ple cases if required. Without casesplit, rifsimp only returns the generic

case which means all pivots are assumed to be nonzero.

Rifsimp uses the RIF algorithm with specified ranking to classify sym-

metries. A table is returned whose entries (also tables themselves) con-

tain information such as solved equations (Solved), splitting conditions

(Case), and assumptions (Pivots) for each case. We refer this returned ta-

ble (e.g. rifOutput above) as rif-output. More details about rif-output can

be found in [66, help on rifsimp, output].

The rif-output can also be viewed graphically by calling caseplot [66,

help on DEtools[caseplot]], such a plot we refer to as a classification tree

or case plot. Figure 3.3 shows the classification tree for the nonlinear heat

equation. It has three pivots (i.e. splitting conditions):

p1 = Ku

p2 = −4KKuu + 7K2
u

p3 = KKuKuuu − 2KK2
uu + K2

uKuu

and each pivot splits into = and 6= branches. For example in Case 1 (the

generic case) where the conditions are

Ku 6= 0 −4KKuu + 7K2
u 6= 0 KKuKuuu − 2KK2

uu + K2
uKuu 6= 0

with its corresponding determining equations. The result of this case con-

55

3.3 Symmetry Classification Using RIF

tains three symmetries: two translation and one scaling. Other cases such

as Case 2 contains four symmetries and Case 3 has five symmetries. The

linear case (Case 4) appears where Ku = 0 which has infinitely many sym-

metries (because it is linear).

Case 1 Case 2

Case 3

Case 4

3-d 4-d

5-d

inf-d

<>

<>

<> =

=

=

p1

p2

p3

Figure 3.3: Classification tree for nonlinear heat equations. Note that p1 =
Ku, p2 = −4KKuu + 7K2

u, p3 = KKuKuuu − 2KK2
uu + K2

uKuu. Case 1 is the
generic case where K can be arbitrary. Therefore, there are at least three
symmetries for nonlinear heat equations.

The choice of the next unclassified equation to split is also important

during classification. As its default, rifsimp chooses the smallest length

equation to be the next candidate. Rifsimp provides a few other options

(pivselect option for rifsimp) such as smalleq (the smallest length equa-

tion), smallpiv (the smallest length of leading coefficient), lowrank (the

lowest ranked leading derivative), . . . , etc. Details of other options in

rifsimp can be viewed in [67, Appendix A].

A weakness of rifsimp is that it does not do symmetry classification in

a very intelligent way. For example, it makes an arbitrary choices of basis

56

3.4 Results from Commutative Algebra

and case splits are not guaranteed to be invariant under the equivalence

group. This can lead to the presence of parameters in the group structure

which are provably removable. The method of Lisle and Reid [38] is guar-

anteed to give invariant case splittings; however, some parts of their pro-

cess are unsuited to computer algebra, and their method therefore cannot

be called algorithmic. This leads to the objective for developing a method

that is invariant under the equivalence group, which will be discussed in

next chapter.

3.4 Results from Commutative Algebra

We state various results from Commutative Algebra that we will be using

in §4.2. These are mostly from [15].

Let K be a field. The set of all polynomials in x1, . . . , xn with coef-

ficients in K is a polynomial ring, denoted by K[x1, . . . , xn]. A subset

I ⊆ K[x1, . . . , xn] is an ideal if it satisfies:

i 0 ∈ I.

ii If f , g ∈ I, then f + g ∈ I.

iii If f ∈ I and h ∈ K[x1, . . . , xn], then h f ∈ I.

Definition 3.4.1 (Ideal Generated). Let f 1, . . . , f s be polynomials in the

polynomial ring K[x1, . . . , xn]. Then we set

〈 f 1, . . . , f s〉 =

{
s

∑
i=1

hi f i : h1, . . . , hs ∈ K[x1, . . . , xn]

}

The crucial fact is that 〈 f 1, . . . , f s〉 is an ideal, the polynomial ideal gener-

ated by f 1, . . . , f s.

57

3.4 Results from Commutative Algebra

A Gröbner basis is a basis for an ideal in a polynomial ring which

allows us to solve problems about polynomial ideals in an algorithmic or

computational fashion. A Gröbner basis can be found algorithmically by

the Buchberger algorithm, and it is implemented in computer algebra e.g.

Maple package Groebner. We need to use the following defining property

of Gröbner basis [15]:

Theorem 3.4.2 (Ideal membership). Let G = {g1, . . . , gq} be a Gröbner basis

for ideal I. A polynomial h is in ideal I if and only if h reduces to 0 modulo by

{g1, . . . , gq}.

‘Reduction’ here means taking remainder on polynomial division.

In this thesis, we are interested in solution of polynomial equations:

Definition 3.4.3 (Algebraic Variety). Let f 1, . . . , f s be polynomials in the

polynomial ring K[x1, . . . , xn]. Let L be an extension field of K. Then we

set

V(f 1, . . . , f s) = {(a1, . . . , an) ∈ Ln : f i(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}

We call V(f 1, . . . , f s) the variety defined by f 1, . . . , f s. Thus, a variety

V(f 1, . . . , f s) ⊆ Ln is the set of all solutions of the system of equations

f 1(x1, . . . , xn) = · · · = f s(x1, . . . , xn) = 0.

Note that polynomials have coefficients in field K, but solutions are

found in the extension field L. Usually L is to be algebraically closed.

For example, we might have polynomials over the field of rationals Q

(where we can compute exactly) but we look for solutions over the field C

of complex numbers.

58

3.4 Results from Commutative Algebra

Theorem 3.4.4 (Hilbert Nullstellensatz). [15] Let h be a polynomial in the ring

K[x1, . . . , xn] and the system E = (f 1, . . . , f s) where (f 1, . . . , f s) are polynomi-

als in K[x1, . . . , xn]. Let V(E) be the variety in an algebraically closed extension

field L. The Nullstellensatz says if h vanishes on V(E) then h is in the radical of

〈 f 1, . . . , f s〉. That is,

(h)m ∈ 〈 f 1, . . . , f s〉 for some m ≥ 1

and (h)m means the power of h to m.

Note that this theorem is invalid if we seek solutions of polynomial

equations in a field that is not algebraically closed.

Finally, we note that for the radical of an ideal, the following processes

are algorithmic: testing if an ideal is radical; testing if a given polyno-

mial is in the radical of an ideal; and finding a Gröbner basis for the

radical of an ideal. These are implemented in Maple (see Help pages

for PolynomialIdeals package, IsRadical, RadicalMembership, Radical

[66]).

59

60

Chapter 4

Invariance Checking from

Determining Equations

Based on the comments at the end of §3.3.1, we wish to make sure a whole

classification tree is invariant under the action of the equivalence group.

One way to do this is to select invariant case splitting conditions during

classification as much as possible. Therefore, this leads to an idea of build-

ing a checking method which can check if DEs (i.e. splitting conditions) are

invariant under the action of the equivalence group or not. In this chapter,

we develop such a method. Furthermore, we wish the process to work

entirely at the level of determining equations so that the method is purely

algorithmic and can be implemented in computer algebra. A good feature

of working with determining equations is that our method can deal with

finite- and infinite-dimensional Lie groups equally easily.

In this chapter, we will show how to use the symmetry condition (see

Theorem 2.1.4) for developing the method, and how to apply this method

to a differential reduction & completion (DRC) method such as RIF, for the

classification of symmetries.

61

4.1 Projection of Equivalence Group Action

4.1 Projection of Equivalence Group Action

Recall from §2.3 that an equivalence transformation is a point transforma-

tion on X × U × A (space of independent and dependent variables and

arbitrary elements) that projects down to space X ×U (space of indepen-

dent and dependent variables). This projection of the equivalence group

is described by Ibragimov [30, §2.2.7], who denotes it by π1.

Example 13. In Example 6, we found the equivalence operators of nonlin-

ear heat equation (NLH) system:

Y = (ax + b)
∂

∂x
+ (ct + d)

∂

∂t
+ (e + a− c)q

∂

∂q
+ (eu + f)

∂

∂u
+ (2a− c)K

∂

∂K
(4.1)

where a, b, c, d, e, f are arbitrary constants. As described in [30, §2.2.7], the

projection π1 amounts to dropping the K component

π1 (Y) = (ax + b)
∂

∂x
+ (ct + d)

∂

∂t
+ (e + a− c)q

∂

∂q
+ (eu + f)

∂

∂u
(4.2)

Ibragimov [30, §2.2.7] also describes another projection π2 to a space

consisting of the arbitrary elements a and those variables that a depend

on. That is, π2 drops any variables that arbitrary elements do not depend

on.

Example 14. For the NLH system the arbitrary element K depends only on

u. The projection π2 of equivalence operator (4.1) amounts to dropping

the (x, t, q) components, giving a vector field on (u, K):

π2 (Y) = (eu + f)
∂

∂u
+ (2a− c)K

∂

∂K
(4.3)

Doing projections π1, π2 is quite clear when one has the equivalence

62

4.1 Projection of Equivalence Group Action

operator Y explicitly (e.g. (4.1)). However in this thesis, we are trying to

work at the level of determining equations – not with the explicit form

of equivalence operator. So the question is how to carry out projections

π1, π2 when we know only the determining equations of the equivalence

group. The answer is through elimination ranking.

In §3.2.1, we mentioned that block elimination ranking can force a sub-

set of the dependent variables to obey a sub-system of its own. For projec-

tion π1, we start with a vector field

Y =
n

∑
i=1

ξi
∂

∂xi +
m

∑
j=1

ηj
∂

∂uj +
p

∑
l=1

αl ∂

∂al (4.4)

and want to drop the αl components, leaving only ξ i, η j. So in the deter-

mining equations, choose a ranking for which all derivatives of ξ i, η j are

ranked lower than all derivatives of αl:

{ξ1, . . . , ξn, η1, . . . , ηm} � {α1, . . . , αp}

This will force out a subsystem for (ξ, η). Also, it is imposed in advance

that ξ i, η j depend only on (x, u). So this subsystem is effectively for (ξ, η)

as dependent variables and (x, u) as independent. That is, the subsystem

corresponds to the π1 projection of the equivalence operator.

Example 15 (π1 Projection). For the nonlinear heat equation (2.24), take the

equivalence operator

Y = ξ
∂

∂x
+ τ

∂

∂t
+ χ

∂

∂q
+ η

∂

∂u
+ κ

∂

∂K

where ξ, τ, χ depend on (x, t, q, u), η depends on u, and κ depends on

(u, K). The unreduced determining equations for the infinitesimals, found

63

4.1 Projection of Equivalence Group Action

by the method from §2.3, are:

ξq = 0, τq = 0, τu = 0, τx = 0,

χx = 0, −χu + ξt = 0, −ξx + τt + χq − ηu = 0,

qKξx − q2ξu + Kχ− qKηu − qκ = 0 (4.5)

We wish to project the equivalence operator down to X×U (independent/

dependent variables only).

Specify an elimination ranking in which:

1. {ξ, τ, χ, η} � {κ}.

This means that all derivatives of ξ, τ, χ, η are ranked lower then all deriva-

tives of κ. This will force out a subsystem of the determining equations for

(ξ, τ, χ, η). We complete the ranking as follows:

2. Rank by order of derivative: if |I| < |J| then uj
I < ul

J .

3. If order of derivative is equal then break ties according to which

dependent variables are present: η < χ < τ < ξ.

4. If still tied then break ties lexicographically by u < q < t < x < K.

To get the π1 projection of the equivalence operator, we use a differen-

tial reduction and completion algorithm (i.e. RIF) to reduce the determin-

ing equations (15) by the ranking specified above. This can be done by the

computer algebra package rifsimp. The reduced system is:

ξxx = 0, τtt = 0, χq =
χ

q
, ηu = −ξx +

χ

q
+ τt, (4.6a)

κ = K(ξx − τt) (4.6b)

64

4.1 Projection of Equivalence Group Action

where ξ depends on x, τ depends on t, χ depends on q, and η depends on

u only.

Due to the elimination ranking above, the subsystem (4.6a) for the π1

projected vector field (4.2) is forced out.

For the π2 projection, we start with the same vector field Y (4.4) and

want to drop variables which the arbitrary elements a do not depend on.

Partition the set of variables V = {x1, . . . , xn, u1, . . . , un} into two disjoint

subsets as follows:

Z = {y ∈ V | al depends on y for some l}

Z̄ = {y ∈ V | al not dependent on y for all l}

Let the infinitesimals corresponding to Z, Z̄ be Θ, Θ̄ respectively.

Therefore, to eliminate Θ̄, we choose a ranking in which:

{α1, . . . , αp} ∪Θ� Θ̄

Moreover, because the infinitesimals in Θ do not depend on al, the ranking

can be further refined as follows:

Θ� {α1, . . . , αp} � Θ̄

Using such a ranking will force out a subsystem for α and the infinitesi-

mals Θ.

Example 16 (π2 Projection). Continuing with Example 15, we now wish to

project the equivalence group to the space of arbitrary elements, that is,

(u, K) space where K is the arbitrary element and u is its dependencies.

Partition the variables V = {x, t, q, u} into Z = {u}, Z̄ = {x, t, q}, and the

65

4.1 Projection of Equivalence Group Action

corresponding infinitesimals are Θ = {η}, Θ̄ = {ξ, τ, χ}.

Specify an elimination ranking in which:

1. {η} � {κ} � {ξ, τ, χ}

This means all derivatives of η are ranked lower than all derivatives of

other infinitesimals, followed by all derivatives of κ ranked lower than all

derivatives of ξ, τ, χ. We complete the ranking as follows:

2. Rank by order of derivative: if |I| < |J| then uj
I < ul

J .

3. If the order of derivatives is equal then break ties according to which

dependent variables are present: χ < τ < ξ.

4. If still tied then break ties lexicographically by q < t < x < u < K.

Starting from the unreduced determining equations for the infinitesi-

mals (15), and using the same procedure as in Example 15 to give a re-

duced form:

ηuu = 0, (4.7a)

κK =
κ

K
, (4.7b)

ξx = −1
q

χ + ηu +
1
K

κ, τt = −2
q

χ + 2ηu +
1
K

κ, χq =
1
q

χ (4.7c)

where η depends on u, and κ depends on K only. Due to the elimination

ranking above, the subsystem (4.7a, 4.7b) for the π2 projected vector field

(4.3) is forced out.

66

4.2 Issues with Symmetry Condition

4.2 Issues with Symmetry Condition

Refer back to the symmetry sufficient condition from Theorem 2.1.4, for a

given DE system E = 0 and vector field X, if

X(k)E = 0, whenever E = 0 (4.8)

then X generates symmetries of the system E.

To enforce “whenever E = 0”, it is usually done by substituting leading

derivatives from the system E (see Step 3 in Example 2). However, when

the given system of DEs is ‘nonlinear’ (e.g. f f 2
xxx + fx fxx fxxx + f 2

xx) = 0

or ‘reducible variety’ (e.g. yxx(zxx + z) = 0), how do we enforce E = 0

in condition (4.8)? Even for some systems (e.g. the following example) in

which leading derivatives are easy to derive, there is still a problem with

enforcing symmetry sufficient condition (4.8).

Example 17. Consider a system of DEs E = 0 where

E = {yxx(zxx + z)} (4.9)

with the corresponding vector field

X = ξ
∂

∂x
+ η

∂

∂y
+ ζ

∂

∂z
. (4.10)

where ξ, η, ζ depend on (x, y, z). If yxx is the leading derivative of the

system E then to find symmetries of the system E we apply the symmetry

condition 2.1.4,

X(2)E = 0 whenever E = 0 (4.11)

We could try to enforce “whenever E = 0” by substituting the leading

67

4.2 Issues with Symmetry Condition

derivative (i.e. yxx = 0) from the system. It gives wrong symmetries. One

reason is because the substitution for yxx = 0 does not include any in-

formation about (zxx + z), and that means we are no longer dealing with

same system E. Therefore, the symmetries we found are not exactly from

the system E.

Note that this type of system is not a pathological case in symmetry

analysis, in fact we come across some DE systems like this when we per-

form symmetry classification by using RIF. Therefore, it is no longer satis-

factory to just substitute out leading derivatives. We need to examine how

to enforce the condition “whenever E = 0” more closely.

Olver [47, §2.3] states an alternative local & analytic form of symmetry

condition, namely locally there exist functions hν(x, u, u(k)) such that

X(k)E =
s

∑
ν=1

hν(x, u, u(k)) f ν(x, u, u(k))

What we want is to do this but not locally, but instead using the Nullstel-

lensatz theorem to get an analogous algebraic condition.

Referring back to the symmetry condition Theorem 2.1.4, for X(k)E to

vanish whenever E = 0 is to ask that X(k)E vanish on an algebraic variety.

However for each polynomial equation f l in the system E, the form

X(k) f l is

X(k) f l = ∑
j,I

pjI(x, u, u(k))ζ
j
I where ζ is some {ξ, η}

The pjI are polynomials in jet variables x, u, u(k) and ζ
j
I are some deriva-

tives of infinitesimals ξ, η.

Suppose E = { f 1, . . . , f s} are polynomials in jet variables x, u, u(k) and

68

4.2 Issues with Symmetry Condition

that { f 1, . . . , f s} is a Gröbner basis for a radical ideal. Note the following

facts:

(i) If all polynomial coefficients pjI vanish on V(f 1, . . . , f s) then X(k) f l

vanishes on V(f 1, . . . , f s).

(ii) So vanishing of all pjI is sufficient for X to be a symmetry (see Theo-

rem 2.1.4).

(iii) But by Nullstellensatz Theorem 3.4.4, pjI vanish on V(f 1, . . . , f s) if

and only if pjI ∈ 〈 f 1, . . . , f s〉.

(iv) And since { f 1, . . . , f s} is a Gröbner basis, pjI ∈ 〈 f 1, . . . , f s〉 if and

only if pjI reduces to 0 modulo { f 1, . . . , f s}.

Therefore, (i) – (iv) immediately imply:

Theorem 4.2.1 (Algebraic Symmetry Condition). Let E = { f 1, . . . , f s} be

polynomials in jet variables x, u, u(k) and { f 1, . . . , f s} a Gröbner basis for a

radical ideal. For each polynomial f l in E, the form X(k) f l is

X(k) f l = ∑
j,I

pjI(x, u, u(k))ζ
j
I where ζ is some {ξ, η}

and where pjI are polynomials in jet variables x, u, u(k) and ζ
j
I are some deriva-

tives of infinitesimals ξ, η. If all pjI reduce to 0 mod { f 1, . . . , f s} then X is a

symmetry of E = 0.

If the given DEs are not a Gröbner basis for a radical ideal then the

algebraic symmetry condition is no longer valid. However, a Gröbner

basis for a radical ideal can be found from the system of DEs by the method

mentioned in §3.4.

69

4.2 Issues with Symmetry Condition

Therefore, the following algorithm tests a sufficient condition for a vec-

tor field X to be a symmetry of the system E = 0. For a system of DEs

E = { f 1 = 0, . . . , f s = 0},

Step 1. Find a Gröbner basis G = {g1, . . . , gs} for the radical of the ideal

〈 f 1, . . . , f s〉.

Step 2. Find X(k)G.

Step 3. Reduce polynomial coefficients in X(k)G mod G.

Step 4. If all reduce to 0 then X is a symmetry of G = 0 (and therefore of

E = 0).

For the case of finding symmetries of the system E, Step 4 is replaced by:

Step 4* Collect the expression by powers of jet variables uj
I of order |I| ≥

1, and set coefficients to 0. These are the determining equations

for symmetries.

Step 5* Solve the determining equations to get symmetries.

Example 18. Let’s re-visit Example 17. This time we use the algebraic sym-

metry condition in Theorem 4.2.1, and follow the steps above to find sym-

metries.

Step 1. The system E is already a Gröbner basis G for a radical ideal, so

G = {yxx(zxx + z)}

Step 2. We start with prolonging the vector field X (4.10) up to order 2,

X(2) = X + η(x)
∂

∂yx
+ ζ(x)

∂

∂zx
+ η(xx)

∂

∂yxx
+ ζ(xx)

∂

∂zxx

70

4.2 Issues with Symmetry Condition

where

η(x) = Dxη − yxDxξ η(xx) = Dxη(x) − (Dxξ)yxx

ζ(x) = Dxζ − zxDxξ ζ(xx) = Dxζ(x) − (Dxξ)zxx

and the total derivative is

Dx =
∂

∂x
+ yx

∂

∂y
+ zx

∂

∂z
+ yxx

∂

∂yx
+ zxx

∂

∂zx

Then X(2)G is

{(zxx + z)η(xx) + yxxζ + yxxζ(xx)}

Step 3. Reduce polynomial coefficients in X(2)G mod G. That is, divide by

yxx(zxx + z) to give remainder:

ξzzzxxzx
2yx + 2 ξyzzxxzxyx

2 + ξyyzxxyx
3 + ξzzyxxzx

3

+ 2 ξyzyxxzx
2yx + ξyyyxxzxyx

2 + ξzzxx
2yx − ηzzzxxzx

2

+
(
−2 ηyz + 2 ξxz

)
zxxzxyx +

(
2 ξxy − ηyy

)
zxxyx

2 + ξyyxx
2zx

+ (2 ξxz − ζzz) yxxzx
2 +

(
−2 ζyz + 2 ξxy

)
yxxzxyx − ζyyyxxyx

2

+ ξzzzzx
2yx + 2 ξyzzzxyx

2 + ξyyzyx
3 − ηzzxx

2 − 2 ηxzzxxzx

+
(
ξzz− 2 ηxy + ξxx

)
zxxyx − ζyyxx

2 + (ξxx − 2 ζxz − 3 ξzz) yxxzx

+
(
−2 ζxy − 2 ξyz

)
yxxyx − ηzzzzx

2 −
(
2 ηyz − 2 ξxz

)
zzxyx

+
(
2ξxy − ηyy

)
zyx

2 − (ηxx + ηzz) zxx + (zζz − ζxx − ζ − 2zξx) yxx

− 2 ηxzzzx −
(
2 ηxy − ξxx

)
zyx − ηxxz

Step 4* Collecting powers from the jet variables yx, zx, yxx, zxx and equat-

71

4.3 Invariance Using Determining Equations

ing to 0, the determining equations for symmetries are as follows:

ξx = 0, ξy = 0, ξz = 0

ηxx = 0, ηxy = 0, ηyy = 0

ζy = 0, ζxx = −ζ + zζz, ζxz = 0, ζzz = 0

Step 5* Solve these determining equations. As a result, there are 7 sym-

metries:

∂

∂x
,

∂

∂y
, x

∂

∂y
, y

∂

∂y
, sin x

∂

∂z
, cos x

∂

∂z
, z

∂

∂z

4.3 Invariance Using Determining Equations

This section covers the development of an algebraic method for checking

invariance which uses only determining equations. It is much more rea-

sonable to stay with the determining equations rather than find the sym-

metry groups because we always can get the determining equations but

we may fail to solve them. For example, the Cauchy–Riemann equations

ξx = ηy, ηx = −ξy

are determining equations for a Lie (pseudo-) group. It is not convenient

to write the solution of the system, but it is easy to work with the system

itself.

The process of developing the method starts from the idea of the sym-

metry condition Theorem 2.1.4. We will show how we approach and refine

the method into our final form of the invariance checking method.

72

4.3 Invariance Using Determining Equations

Let E be a system of DEs

E =
{

f 1, . . . , f s
}

, where f ν(x, u, u(k)) = 0, ν = 1, . . . s (4.12)

which lives in J(k)(X, U), and let X be a vector field on the base space of

independent and dependent variables as

X =
n

∑
i=1

ξ i ∂

∂xi +
m

∑
j=1

η j ∂

∂uj (4.13)

where each ξ i, η j depends on (x, u).

Suppose the components ξ, η of X (4.13) are constrained to satisfy cer-

tain determining equations (denoted as Q). Here Q is a list of linear ho-

mogeneous equations with independent variables (x, u) and dependent

variables ξ, η. Our question is: for all the vector fields G built as solutions

of the determining equations Q, are all these vector fields G symmetries of the

system E? Our goal in this section is to answer this question. The obvi-

ous way to answer (first approach below) is not practical, we refine this in

three stages until we have an efficient, algorithmic method.

First Approach The above question can be answered easily by applying

the symmetry condition 2.1.4. Let G(k) be a vector field which is built from

solving the determining equations Q. If the condition

G(k)E = 0, whenever E = 0 (4.14)

is satisfied for all such G then these vector fields G(k) are symmetries of

the system E.

Example 19. Consider the question of whether all affine transformations

73

4.3 Invariance Using Determining Equations

are symmetries of the second order linear ODE yxx = 0, that is,

E = {yxx} (4.15)

Here dependent variable is y, independent variable is x. Let the vector

field X be

X = ξ
∂

∂x
+ η

∂

∂y
(4.16)

where ξ, η depend on (x, y). And affine vector fields are the solutions of

the determining equations Q

ξxx = ξxy = ξyy = 0, ηxx = ηxy = ηyy = 0 (4.17)

To check if the system E = 0 (4.15) is invariant under affine vector fields

according to the method described above, we need to get the prolonged

vector fields G(2) by first solving the determining equations Q (4.17),

ξ = a11x + a12y + b1, η = a21x + a22y + b2

where a11, a12, a21, a2, b1, b2 are constants. The vector field G has the form:

G = (a11x + a12y + b1)
∂

∂x
+ (a21x + a22y + b2)

∂

∂y
(4.18)

Second we then prolong G up to order 2,

G(2) = G + η(x)
∂

∂yx
+ η(xx)

∂

∂yxx

74

4.3 Invariance Using Determining Equations

where the prolongation components are (2.8)

η(x) = a21 + (a22 − a11)yx − a12y2
x

η(xx) = (a22 − 2a11)yxx − 3a12yxyxx

Now we apply the symmetry condition (4.14):

G(2)yxx = η(xx)

= (a22 − 2a11 − 3a12yx)yxx

Reducing mod E as per the algebraic symmetry condition 4.2.1 gives

G(2)yxx mod yxx = (a22 − 2a11 − 3a12yx)yxx mod yxx

= 0

Since the result is 0, all affine vector fields are symmetries of the system

yxx = 0.

Although the condition (4.14) meets our goal for testing invariance,

the process is unreliable and definitely not algorithmic because it requires

explicit solution of Q. For example, this will fail in finding all conformal

symmetries of yxx = 0 because of the awkwardness of solving the Cauchy-

Riemann equations (so we failed in the very first step of the method).

Second Approach In this approach, we try to avoid solving any PDEs so

the process is algorithmic, and one way to do this is to work on the level

of the determining equations.

Let S be the determining equations for point symmetries of the system

E. Recall the question. To say all the vector fields G are symmetries of the

75

4.3 Invariance Using Determining Equations

system E is equivalent to say all vector fields G are solutions of S. This

amounts to asking whether all solutions of Q are solutions of S. If Q is

in differentially completed form (see §3.2.1) then this can be answered by

reduction.

The condition is summarised as follows: If Q is differentially complete

and if

reduce(S) mod Q (4.19)

is 0 then every solution of Q is a solution of S. We can conclude that all the

solutions of Q are symmetries of system E.

Example 20. Consider the question of whether all conformal transforma-

tions of the xy-plane are symmetries of yxx = 0. The conformal vector

fields obey the determining equations Q,

ξx = ηy, ηx = −ξy (4.20)

(which are the Cauchy-Riemann equations). And the determining equa-

tions S for point symmetries can be found in (2.17),

ξxx = 0 2ηxy − ξxx = 0

ηyy − 2ξxy = 0 −ξyy = 0 (4.21)

We need to complete the system Q, but in fact (4.20) is already complete

with the ranking:

1. rank by order of derivative: if |I| < |J| then uj
I < ul

J .

2. If order of derivative is equal then break ties lexicographically by y < x.

3. If still tied then break ties by η < ξ.

76

4.3 Invariance Using Determining Equations

We substitute the complete form of Q into S (4.21). If we obtain the

trivial equation (i.e. 0 = 0), then all solutions of Q are also solutions of S.

We have

reduce(S) mod Q =
{
−ξyy = 0, −ηyy = 0

}
(4.22)

so S does not reduce to 0 modulo Q. Therefore, not all solutions of Q are

solutions of S, and we can conclude that not all conformal transformations

are symmetries of yxx = 0.

This time the process has the virtue of being algorithmic; however, the

method is extremely wasteful with calculation, since it forms the point

symmetry determining equations S. But these are irrelevant – we are only

interested in those symmetries that are built from the determining equa-

tions Q.

Final Approach – The Invariance Checking Method (ICM) The third

approach combines the best features of the two approaches above. The

question answered by the second approach was are all the solutions of Q

solutions of S? But this should really be rephrased as do the solutions of Q

leave the system E = 0 invariant? We now show how to answer this without

knowing the solutions of Q. The idea is to take account of the information

from Q during the process of building the prolonged vector field G(k).

As a result, we developed a better method – the invariance checking

method (ICM). The ICM combines features of applying symmetry condi-

tion directly (from the first approach) and works on the level of determin-

ing equations (from the second approach). In other words, the ICM uses

the symmetry condition (4.14) but in such a way that the components of

the prolonged vector field G(k) have been reduced by Q. The procedures

77

4.3 Invariance Using Determining Equations

of the ICM are as follows:

1. Form the prolonged operator G(k).

2. Reduce its components ξ i, η
j
I modulo Q. And now we have a reduced

prolonged vector field, denoted as G
(k)
red.

3. Check if the symmetry condition

G
(k)
redE = 0 whenever E = 0 (4.23)

is satisfied. (For instance using the method from §4.2).

All these steps are algorithmic: step 1 is just prolongation, step 2 is reduc-

tion (substitute out leading derivatives from Q), step 3 is applying a vector

field to the system E (differentiation) and reduction modulo E (polynomial

division). So there is no need to solve PDEs Q.

The first two steps only need to be done once for a given Q. If there are

several systems E1, E2, . . . to be tested for invariance, only the third step

needs to be done on each system. And this is quite efficient.

Example 21. Consider again Example 20, the problem of checking if all

conformal transformations are symmetries of the 2nd order ODE yxx = 0.

A vector field G (4.16) has components ξ, η constrained by the Cauchy-

Riemann equations Q,

ξx = ηy, ηx = −ξy (4.24)

Our task is to use the invariance checking method (ICM) to test if the

system E = 0 (i.e. yxx = 0) is invariant under conformal vector fields

which are built from this Q. Following the steps of the ICM method above:

78

4.3 Invariance Using Determining Equations

1. Prolong the vector field G up to order 2. The prolonged vector field G(2)

has the form

G(2) = ξ
∂

∂x
+ η

∂

∂y
+ η(x)

∂

∂yx
+ η(xx)

∂

∂yxx

where (see Example 1)

η(x) =ηx + yxηy − yxξx − y2
xξy

η(xx) =ηxx + 2yxηxy + y2
xηyy − yxξxx − 2y2

xξxy − y3
xξyy

+ yxx
(
ηy − 2ξx − 3yxξy

)
2. Reduce the vector field components ξ, η, η(x), η(xx) modulo Q. We substi-

tute the prolongation of Cauchy-Riemann (4.24)

ξx = ηy, ηx = −ξy,

ξxx = −ξyy, ξxy = ηyy, ηxx = −ηyy, ηxy = −ξyy

so that the prolonged vector field becomes

G
(2)
red = ξred

∂

∂x
+ ηred

∂

∂y
+ η(x)red

∂

∂yx
+ η(xx)red

∂

∂yxx

where

ξred = ξ

ηred = η

η(x)red = −(1 + y2
x)ξy

η(xx)red = (−3yxyxx)ξy − yxxηy − (yx + y3
x)ξyy − (1 + 2yx − y2

x)ηyy

79

4.3 Invariance Using Determining Equations

3. Use the symmetry condition (4.23) to test if yxx = 0 is invariant.

G
(2)
redyxx = η(xx)red

= (−3yxyxx)ξy − yxxηy − (yx + y3
x)ξyy − (1 + 2yx − y2

x)ηyy

(4.25)

Reducing this mod E (i.e. divide by yxx to get remainder) gives

G
(2)
redyxx = (−yx + y3

x)ξyy + (−1− y2
x)ηyy mod yxx

The result is not 0 so the DE is shown as ‘non-invariant’. That is,

yxx = 0 is not invariant under action of the conformal group.

The left over terms above (or (4.22)) are the obstructions to being a sym-

metry. Setting them to 0, we obtain the additional determining equations

ξyy = 0, ηyy = 0.

For a conformal transformation (4.16) to be a symmetry of yxx = 0, the

additional determining equations must be satisfied.

The ICM method is clearly a much better method for checking invari-

ance because it avoids construction of the determining equations for point

symmetries S. If the system Q contains simple equations, the ICM takes

of advantage of the simplification. In our application in the next chapter,

system Q will be the determining equations for the equivalence group and

are usually fairly simple equations. Also we will need to check invari-

ance of multiple systems E1, E2, . . . with respect to the same Q. The second

method (4.19) redoes each system from the beginning, but the ICM re-

duces modulo Q once only for all systems, so is much more efficient.

80

4.4 Invariance Checking in Symmetry Classification

4.4 Invariance Checking in Symmetry Classifica-

tion

In §3.3 we showed how to use a differential reduction and completion

method – RIF – to classify symmetries. Unfortunately, the classification

performed by RIF does not respect the equivalence group: the choice of

basis and case splits are not guaranteed to be invariant under the equiv-

alence group. However, the invariance checking method (ICM) from the

previous section can be used to help RIF to improve the symmetry classi-

fication so that it does respect the equivalence group.

The classification tree is branched by pivots which are chosen by RIF.

One way to check that the classification tree is invariant under the equiva-

lence group action is to use the ICM method on all pivots (i.e. case splits)

in the classification tree. If all pivots are invariant under equivalence

group action then the whole classification is invariant under the equiv-

alence group of the given system.

So we would like to check invariance for each pivot in the classification

tree. For this we use the theory from §4.3. Before we apply the method, we

first need to find the determining equations Q for equivalence group from

the DE system E. The method for finding Q is described in §2.3. Let piv be

a pivot in the classification tree, the steps for checking piv to be invariant

under the action of equivalence group are as follows :

1. Form the prolonged operator G(k) up to same order as in piv once

and for all.

2. Reduce its components ξ i, η
j
I modulo Q once for all. The reduced

prolonged vector field is denoted as G
(k)
red.

81

4.4 Invariance Checking in Symmetry Classification

3. Check if the symmetry condition

G
(k)
red piv = 0 whenever piv = 0

is satisfied. If so then piv is invariant under the equivalence group

action. Else if it is not 0 then piv is not invariant.

There are two ways we can use the ICM method to check pivots (the

steps above) in the symmetry classification problem:

1. Label pivots from classification tree. After we have a complete classifi-

cation tree, we can sweep through the tree, test the pivots and label

them as ‘invariant’ or ‘not invariant’. It gives an idea of the relation-

ship of the case splits to the equivalence group.

2. Guide RIF during classification. During classification process, when RIF

is forced to split into cases, there is a list of candidates which are

eligible to be the selected as pivots (referred as splitting candidates).

The idea is to test these splitting candidates and choose an invariant

candidate (if possible) to be the selected pivot. And we repeat this

procedure at every split until the classification is complete. This

is to help RIF to improve classification so that it now respects the

equivalence group.

In the following sections, we will illustrate these two applications in

more detail.

4.4.1 Label pivots from classification tree

Assume we have a complete classification tree such as the one shown in

Figure 4.1. We would like to apply the steps above to check the invariance

82

4.4 Invariance Checking in Symmetry Classification

of these pivots p1, . . . , p4.

E: a system of DEs with
A’s

S: the determining
equations for E with A’s

p1

p2

Case 1 p3

Case 2 Case 3

p4

Case 4 Case 5

Figure 4.1: Symmetry classification by using RIF. The pivots p1, . . . , p4
(shows in red circle) are the places where the invariance checking method
is involved.

The idea of this application is to first check invariance on all pivots (us-

ing the steps above) from the completed classification tree, then provide

additional information on these pivots by labeling invariant to be ‘true’ or

‘false’. So it gives an idea on how much the classification tree respects the

equivalence group. The whole process is efficient even for complicated

case trees (e.g. more than 50 cases), the total number of splitting condi-

tions are not big and the whole process only involves differentiation and

reduction.

83

4.4 Invariance Checking in Symmetry Classification

Example 22 ((1 + 1) nonlinear heat equation).

ut + qx = 0,

q = −K(u)ux, K(u) 6= 0 (4.26)

Using the result of symmetry classification from Example 12 in §3.3

(the classification case tree is showed in Figure 3.3), the following splitting

conditions are obtained:

Ku = 0, (4.27a)

−4KKuu + 7K2
u = 0, (4.27b)

KKuKuuu − 2KK2
uu + K2

uKuu = 0. (4.27c)

To test whether the whole classification is invariant under the action

of the equivalence group we can test these pivots one by one. That is, we

can check if each splitting condition (i.e. (4.27)) is invariant or not using

the method of §4.4. But first we need to find the determining equations for

equivalence group.

The determining equations for equivalence group for system (4.26) (de-

noted as Q) were derived in Example 7 in §2.3. Because pivots only involve

variables u, K, we only need this part (π2 projection, §4.1) of Q:

κK =
κ

K
, ηuu = 0 (4.28)

and the corresponding vector field

G = η
∂

∂u
+ κ

∂

∂K

84

4.4 Invariance Checking in Symmetry Classification

where η depends on u and κ depends on K only.

Our first question: is Ku = 0 (4.27a) invariant under action of equivalence

group? The steps for the invariance checking for Ku = 0 are as follows:

1. Prolong the vector field G to order 1 (because Ku is a first order DE)

G(1) = η
∂

∂u
+ κ

∂

∂K
+ κ(u)

∂

∂Ku
(4.29)

where

κ(u) = κu + KuκK − Kuηu (4.30)

and κ(u) depends on (u, K, Ku).

2. Reduce the vector field component κ(u) by Q (4.28)

ηred = η

κred = κ

κ(u)red = κ(u) mod Q

=
Ku

K
κ − Kuηu (4.31)

The reduced version of prolonged vector field is

G
(1)
red = η

∂

∂u
+ κ

∂

∂K
+
(
−Kuηu +

Ku

K
κ

)
∂

∂Ku
(4.32)

3. Check if Ku = 0 is invariant by applying the symmetry condition.

We first find

G
(1)
redKu = −Kuηu +

Ku

K
κ

85

4.4 Invariance Checking in Symmetry Classification

then

G
(1)
redKu mod Ku = −Kuηu +

Ku

K
κ mod Ku

= 0

Therefore, Ku = 0 is tested as invariant under the action of the equiv-

alence group.

Similarly the second splitting condition −4KKuu + 7K2
u = 0 (4.27b) is

tested as follows:

1. This time we are required to prolong the vector field to order 2 be-

cause of the second pivot (4.27b)

G(1) = η
∂

∂u
+ κ

∂

∂K
+ κ(u)

∂

∂Ku
+ κ(uu)

∂

∂Kuu
(4.33)

where κ(uu) depends on (u, K, Ku, Kuu), and κ(u) was found in (4.30).

We can take advantage of κ(u)red to find out κ(uu)

κ(uu) = Duκ(u) − KuuDuη

= Duκ(u)red − KuuDuη

= Du

(
Ku

K
κ − Kuηu

)
− KuuDuη

= −Kuηuu + Ku

(
Ku

K
κK −

Ku

K2 κ

)
+ Kuu

(κ

K
− ηu

)
− Kuuηu

2. Since we have already reduced κ(u), we only need to reduce κ(uu)

86

4.4 Invariance Checking in Symmetry Classification

mod Q (4.28)

κ(uu)red = κ(uu) mod Q

=
Kuu

K
κ − 2Kuuηu (4.34)

The reduced vector field to order 2 becomes

G
(2)
red =η

∂

∂u
+ κ

∂

∂K

+
(
−Kuηu +

Ku

K
κ

)
∂

∂Ku
+
(

Kuu

K
κ − 2Kuuηu

)
∂

∂Kuu
(4.35)

3. Check if −4KKuu + 7K2
u = 0 is invariant by applying the symmetry

condition again. We first find using (4.31, 4.34),

G
(2)
red

(
−4KKuu + 7K2

u

)
=− 4Kκ(uu)red + 14Kuκ(u)red − 4Kuuκred

=− 4K
(

Kuu

K
κ − 2Kuuηu

)
+ 14Ku

(
Ku

K
κ − Kuηu

)
− 4Kuuκ

=2
(κ

K
− ηu

) (
−4KKuu + 7K2

u

)
Then G

(2)
red

(
−4KKuu + 7K2

u
)

mod (−4KKuu + 7K2
u) is 0. Therefore,

−4KKuu + 7K2
u = 0 is also tested as invariant under the action of the

equivalence group.

The last remaining splitting condition KKuKuuu − 2KK2
uu + K2

uKuu = 0 can

be tested using exactly the same steps as we have done for previous two

splitting conditions. The vector field needs to be prolonged to order 3

this time. As a result, KKuKuuu − 2KK2
uu + K2

uKuu = 0 is also found to

be invariant, so we can conclude the whole classification tree Fig. 3.3 is

87

4.4 Invariance Checking in Symmetry Classification

invariant under the equivalence group.

4.4.2 Guide RIF during classification

During classification by RIF, the algorithm can reach a stage where it is

forced to split into two cases. If there is more than one equation, then we

may have a choice of which equation to split. For instance, recall back to

§3.3.1 the Maple package rifsimp allows the user to specify preferences

on which pivot to choose, such as choosing the smallest length pivot or

the lowest rank pivot.

In each branching during classification, before a pivot is selected, there

is a set of eligible pivot candidates. The idea is to use the theory from

§4.3 to select the preferred ‘invariant pivot’ rather than just the preferred

‘pivot’. (‘Invariant’ meaning with respect to the equivalence group.)

Therefore, when there is a branching happening during classification,

assuming we have a set of pivot candidates, the steps are as follows:

1. Sort the pivot candidates according to order of preference from the most

desirable to the least desirable ones. Denote the sorted pivot candidates

list as PivCand = [pc1, . . . , pcn].

2. From the list PivCand, starting from pc1, we check whether pci is in-

variant using the steps from the previous section. The first pci that tests

to be invariant is the selected pivot.

3. If all pivot candidates are non-invariant then we choose the first pivot

candidate pc1 to be the selected pivot.

The ‘order of preference’ here could be for instance from smallest to largest

(in size), or from lowest to highest (in ranking). The reason for Step 1 is

88

4.4 Invariance Checking in Symmetry Classification

that sorting the pivot candidates is computationally cheap, compared with

the ’checking invariance’ step. By sorting, Step 2 allows exit as soon as an

invariant pivot candidate is found: there is no need to test any remain-

ing pivot candidates. Therefore, the whole process becomes much more

efficient.

Example 23. Suppose that instead of the determining equations (2.19) for

the nonlinear heat equation, RIF had the following (artificial) equations

(KKuu − K2
u)τu = 0

(KKu − K2)ηxx − (Ku − K)ηt + τu = 0

(KKuKuuu − 2KKuu + K2
uKuu)τu = 0

and we are asked to choose one of them to split on. And suppose we

still wish the splitting to be invariant with respect to the same equivalence

group (4.28).

We specify a ranking for which

{K} � {τ, ξ, η}

with ties broken by order of derivative. The leading derivatives of the

equations are τu, ηxx, τu, respectively. Therefore, we have a set of pivot

candidates:

{
KKuu − K2

u, KKu − K2, KKuKuuu − 2KKuu + K2
uKuu

}
Using the steps above we first sort these pivot candidates in order of

preference, which we take as being according to the length of pivots from

89

4.4 Invariance Checking in Symmetry Classification

smallest to largest. We denote the sorted pivot candidates list as

PivCand =
[

KKu − K2, KKuu − K2
u, KKuKuuu − 2KKuu + K2

uKuu
]

The next job is test invariance (with respect to equivalence group (4.28))

using steps from previous section. The first candidate KKu − K2 is tested

as non-invariant, therefore we move on to the second. Since the second

candidate KKuu − K2
u is tested as invariant, we select it as the pivot, that is

it is the smallest invariant pivot candidate. There is no need to test the last

candidate.

By using this method to guide RIF during classification, we can try to

guide it away from bad (non-invariant) pivot choices. This should be able

to lead to a simpler classification tree than the current version of RIF can

achieve.

90

Chapter 5

Implementation of Invariance

Checking Method

In the previous chapter, we developed a method for checking invariance

of DEs under the action of some group. For symmetry classification prob-

lems, we also have established two applications (i.e. label pivots after clas-

sification and guide RIF during classification, see §4.4) where we can ap-

ply the method to help find a classification which respects the equivalence

group. Because the whole process is purely algorithmic, it is desirable to

implement the method in computer algebra, and this is our goal for this

chapter.

Before we go any further, our first job is to choose an existing differen-

tial reduction & completion (DRC) package for our implementation. We

chose the Maple package rifsimp which uses the RIF algorithm for the

following reasons:

1. Maple is one of the most widely used computer algebra systems.

2. A useful symmetry package (as part of PDEtools) is available, from

91

5.1 Required Implementations

Maple 11. This package includes various functionality such as find-

ing determining equations for symmetries, prolonging vector fields,

etc. We can utilise functions from this existing package as much

as possible so we are able to focus on the main implementations,

namely symmetry classification using rifsimp with the the invari-

ance checking method (ICM).

3. Rifsimp is a robust and efficient DRC package in Maple. Many

Maple commands (e.g. DeterminingPDE, pdsolve) use rifsimp as

a service procedure. If the invariance checking method is imple-

mented in rifsimp then it will immediately benefit many symmetry

classification users.

5.1 Required Implementations

There are several required implementations to be done in order to achieve

the two applications described in §4.4.

We first need to think about how we should manage/store information

about the DE system. In our implementation, we often need to use infor-

mation from the DE system and later add further information to it. There

are two kinds of information of DE system involved in this implementa-

tion:

• Initial information of DE system, which is given by user. This includes

DE system itself, list of independent/dependent variables, any con-

straints on the arbitrary elements,. . . .

• Updated information of DE system, which is calculated as part of the

symmetry classification process. This includes determining equa-

92

5.1 Required Implementations

tions for symmetries and for the equivalence group.

Because the information on the DE system comes from various sources (i.e.

given by user or resulting during classification), and because the methods

described in §4.4 use all of this information, we need to make sure that all

needed information for the DE system is bundled together. Therefore, our

first two required tasks are:

(i) DEs storage and management:

Task 1 We need to design a storage structure to hold all information about

the DE system needed for the package. We will refer to this structure

as a pdeRecord.

Task 2 We need to provide a constructor function [46] which creates a

pdeRecord from initial information on a given DE system.

Initial information
for the DE system

given by user

pdeRecord: A storage
container for

information on the
DE system

Additional
information on the

DE system (e.g.
determining
equations for

equivalence group)

creating a
pdeRecord for
DE system

update

Figure 5.1: A pdeRecord is created by a call to a constructor function. In-
formation in the pdeRecord gets updated by calling other methods. When
a pdeRecord contains all information on the DEs, the pdeRecord is com-
plete.

93

5.1 Required Implementations

Next, recalling the two applications described in §4.4, the ideas for

using rifsimp are as follows:

1. Labelling invariant splitting conditions: First, run normal rifsimp to

produce a classification tree. We sweep through each pivot in the

classification tree, using the ICM method to test if the pivot condi-

tions are invariant, and label the pivot accordingly.

2. Improving splitting condition selection: We must guide rifsimp to use

a more preferable pivot such as the smallest invariant pivot dur-

ing case splittings. One way to do this is that we can implement a

new ‘pivot selection’ option into rifsimp so the invariance checking

method can be applied while performing classifications.

Therefore, the remaining required tasks are:

(ii) Pre-step – before classifying symmetries (i.e. before calling rifsimp):

Task 3 We need to find the determining equations for point symmetries

so we can do classification.

Task 4 To test invariance under the action of the equivalence group, we

need to derive determining equations for the equivalence group be-

forehand.

(iii) rifsimp with the invariance checking method:

Task 5 To implement the invariance checking method (see §4.3).

Task 6 Code for labelling invariant splitting conditions (see §4.4.1). This

relies on Task 5.

94

5.2 Symmetry Classification Package

Task 7 A modified version of rifsimp which has an additional option

for choosing invariant splitting DEs during classification (see §4.4.2).

This also relies on Task 5.

(iv) Display case tree structure:

Task 8 There is currently a display function caseplot (in the DEtools pack-

age) which draws case tree structure from given rif-output. How-

ever, we need to modify this function so it can show invariance in-

formation too.

5.2 Symmetry Classification Package

Now that all required tasks have been identified, we will describe how we

developed a Maple package for classifying Lie point symmetries, called

SymmetryClassification. This package serves two main purposes, first,

it provides users with a front-end tool for doing symmetry classification,

so the user does not need to understand how other packages (such as

rifsimp and PDEtools) work. Second, it provides additional functionality

for classifying symmetries while respecting the equivalence group. This

functionality uses the method described in §4.4.

As shown in Figure 5.3, the symmetry classification package contains

several methods (i.e. procedures), and these methods are clustered into

four groups: constructor, pre-step methods, rifsimping, and displaying.

In this section, we give a brief description of the procedures correspond-

ing to the tasks as specified in §5.1. The gritty detail of each method in

the symmetry classification package is attached as help pages under Ap-

pendix A. We will also illustrate how to use the package by applying it to

some examples.

95

5.2 Symmetry Classification Package

The given DE system

Task 1

(i) Constructor

Task 2

(ii) Pre-step

Task 3 Task 4

(iii) rifsimp + invariance checking

Application 1
Normal
rifsimp

Task 6

Application 2

Task 7

(iv) Display

Task 8

a pdeRecord

a complete pdeRecord

rif-output with invariant information

Task 5
serves Task 6 and Task 7

Task 1: Design pdeRecord structure

Task 2: Create a pdeRecord

Task 3: Find det. eqs for symmetry

Task 4: Find det. eqs for equiv group

Task 5: The ICM method

Task 6: Label pivots from rif-output

Task 7: Modified version of rifsimp

Task 8: Display invariant rif-output

Figure 5.2: Overall structure of all required tasks. Our work is mostly on
Tasks 1, 2, 3, 4, 6, 7.

96

5.2 Symmetry Classification Package

Symmetry Classification Package

A DE system
+ info.

Completed
pdeRecord

Case tree
diagram

(i) Constructor
newPDESys

(ii) Pre-step methods
detEqsForSymm

detEqsForEquiv

(iii) Rifsimp + invt. method
newProlongation

AddInvtInfo

SymmetricRifsimp

(iv) Display method
CasePlot

A pdeRecord

Rif-output
+ invt. info.

Figure 5.3: Sequence structure of the symmetry classification package
where the initial information of DE system is given by the user. Methods
from the package are shown in red rounded corner shape, and output
information is shown in yellow rectangle shape.

5.2.1 Storage Structure for DE System

pdeRecord (Task 1)

A pdeRecord is a storage container which we designed for symme-

try classification package to store all information on a DE system.

This storage uses the module construct from Maple (see [66, help on

module]). A pdeRecord contains the following main fields:

• sys: Basic information on the DE system which is given by a

user or inferred by the constructor. This includes the DE sys-

tem itself, its independent/dependent variables and arbitrary

elements.

97

5.2 Symmetry Classification Package

• constraint: Optional information on the DE system given by

the user, it specifies any constraints on the arbitrary elements.

This includes constraint DEs (and/or inequalities) and their in-

dependent/dependent variables.

• detSymm: Information on the determining equations for point

symmetries of the DE system. It also includes other information

such as independent/dependent variables of the determining

equations.

• detEquiv: Information on the determining equations for equiv-

alence group of the DE system. This field contains two dif-

ferent spaces on which the equivalence group may act: (1) on

all variables (fullAction) and (2) on arbitrary elements only

(arbvarsAction). Each action has its own determining equa-

tions and other information such as independent/dependent

variables (see §4.1).

A call to the constructor (below) creates a pdeRecord with these four

fields, but detSymm and detEquiv are not assigned yet. The infor-

mation on detSymm and detEquiv will be filled in later by pre-step

methods. Once a pdeRecord has all four fields (i.e. sys, constraint,

detSymm and detEquiv) assigned, the pdeRecord is then complete and

ready for classification using rifsimp + invariance checking.

newPDESys (Task 2)

This is the constructor [46] for a pdeRecord of the symmetry classifi-

cation package. The purpose of newPDESys is to create a pdeRecord

from a DE system given by a user. It also allows specification of

constraints on the arbitrary elements, a feature which will later al-

98

5.2 Symmetry Classification Package

low us to introduce differential invariants of the equivalence group

to help with classification (e.g. §5.3.2). Another feature of this pro-

cedure is that it can extract independent/dependent variables and

identify arbitrary elements from the DE system and record them in

the pdeRecord. The variables can be also be specified by the user

if desired; in this case, newPDESys checks the validity of the user’s

specification.

5.2.2 Pre-step methods

detEqsForSymm (Task 3)

The purpose of this procedure is to derive the determining equa-

tions for point symmetries. The procedure detEqsForSymm updates a

pdeRecord which has been created by calling newPDESys. The proce-

dure allows a user to specify ‘infinitesimals’, but will choose sensible

defaults if not specified. detEqsForSymm meets its purpose by calling

the existing procedure DeterminingPDE (from package PDEtools).

After the determining equations for symmetries have been derived,

the results are written in the detSymm field, and the pdeRecord is up-

dated.

detEqsForEquiv (Task 4)

This procedure is to derive the determining equations for the equiv-

alence group of a given DE system. This procedure is similar to

detEqsForSymm, the procedure detEqsForEquiv updates a pdeRecord

which has been created by calling newPDESys. Again, it allows a

user to specify ‘infinitesimals’, but will choose sensible defaults if

not specified.

99

5.2 Symmetry Classification Package

This procedure derives determining equations for the equivalence

group using the steps described in §2.3. Then it derives two types of

determining equations on: all variables (fullAction) and arbitrary

variables (arbvarsAction) spaces (see §4.1). The procedure first calls

the existing procedure DeterminingPDE for each of DE system and

constraint system, then combines these two systems and completes

it by rifsimp.

After the determining equations for the equivalence group have been

derived, the results are written in the detEquiv field, which updates

the pdeRecord. The field detEquiv contains two sub-fields, namely

fullAction and arbvarsAction.

5.2.3 Rifsimp with the ICM method

newProlongation (Task 5)

This is the code implementation of the ICM method as described in

§4.3. As shown in Fig. 5.2, this procedure is outside of the main de-

velopment of the implementation. The procedure newProlongation

was written by Dr. Ian Lisle, and it is a service procedure for other

procedures (i.e. AddInvtInfo and SymmetricRifsimp below).

newProlongation is a constructor function for creating methods for

calculating a reduced prolonged vector field. It requires a vector field

(e.g. vector field of equivalence group), a list of dependent variables,

a list of independent variables, and the determining equations of

some group. It returns a module containing methods for comput-

ing reduced prolonged vector fields and checking invariance. The

main method in newProlongation is checkInvariant. The method

100

5.2 Symmetry Classification Package

checkInvariant requires a DE system (i.e. pivot conditions) and it

returns true if the system is invariant or false if not-invariant.

AddInvtInfo (Task 6)

The procedure AddInvtInfo is the implementation of application 1

as described in §4.4.1. The purpose of this procedure is to check in-

variance of pivot conditions and to tag additional information (i.e.

invariant or non-invariant) on these pivots in a completed classifica-

tion tree. This procedure requires a rif-output which has no invariant

information in it, the sub-field arbvarsAction under detEquiv from

the pdeRecord (see §5.2.1), and a list of arbitrary elements. It returns

an updated rif-output which contains invariance information on all

pivots. The returned rif-output includes all entries (e.g. Pivots, Case,

Solved,. . .) from the original rif-output but it also includes two new

entries for invariant information purpose:

• InvtCase: The format is similar to the entry Case but InvtCase

has ‘true’ (as invariant) or ‘false’ (as non-invariant) appended.

• InvtPivots: Likewise, the format is similar to the entry Pivots

but InvtPivots has ‘true’ (as invariant) or ‘false’ (as non-invariant)

appended.

(The original entries Case and Pivots are untouched in the rif-output,

so that other procedures that rely on these entries do not break.)

The procedure AddInvtInfo uses the the method checkInvariant

(returned by the service procedure newProlongation) for each pivot

condition. The steps of this procedure are as follows:

1. Collect all pivots from a given rif-output.

101

5.2 Symmetry Classification Package

2. Call newProlongation to return a module which contains meth-

ods for the reduced prolonged vector field.

3. Use the ICM method (i.e. checkInvariant) to check invariance

of all pivot conditions, and collect the invariant ones into a list.

4. Create two new entries : InvtCase & InvtPivots by copying

Case & Pivots for each case in the classification tree.

5. Label all pivots in these two new entries for all cases, using the

invariant pivot list as extracted in Step 3.

6. Append InvtCase & InvtPivots into the rif-output, and return

the updated rif-output.

SymmetricRifsimp (Task 7)

The procedure SymmetricRifsimp is a modified version of rifsimp.

The aim of this procedure is to guide rifsimp to select ‘invariant’

pivots during classification (see §4.4.2). All functionality of rifsimp

can be applied to SymmetricRifsimp, but SymmetricRifsimp provides

an additional option in pivselect which is to select ‘invariant’ piv-

ots if wanted.

To call SymmetricRifsimp without providing the pivot select option

(which is just calling rifsimp with default pivselect option), the

procedure requires at least: determining equations for symmetries

(e.g. field sys under detSymm in pdeRecord), a valid ranking (see

§3.3), and casesplit.

To select invariant pivots during classification, we need to specify

the pivselect option as invariant enabled, plus determining equa-

tions for the equivalence group in arbitrary elements action (e.g. field

arbvarsAction under detEquiv in pdeRecord), and a list of arbitrary

102

5.2 Symmetry Classification Package

elements. The format for this pivselect option looks like this

pivselect=[’invariant’, detEquivInArbvarsAction, arbVarsList];

Note that the order of preference for invariant pivots is assumed to

be smalleq (smallest length equations).

The procedure returns a rif-output. If invariant pivots are requested

then the rif-output has two new entries InvtCase and InvtPivots

(which is the same as the output returned by calling AddInvtInfo).

5.2.4 Display Procedure

CasePlot (Task 8)

This procedure CasePlot is a re-written version of the original pro-

cedure caseplot [66, help on DEtools]. The idea for both procedures

(i.e. caseplot and CasePlot) is to display rif-output into a graphi-

cal classification tree so it is easier to view. The procedure CasePlot

was originally developed for a previous project, and this code was

written by Dr. Ian Lisle. For this project, we extended the procedure

so that it can display not just normal rif-output but also display rif-

output with invariance information attached to it.

The minimum requirement for the CasePlot is a rif-output, it returns

a graphical classification tree.

5.2.5 Front-end procedure

classifySymmetry

This is the front-end procedure of the SymmetryClassification pack-

103

5.3 Examples

age. The purpose of this procedure is to provide an easy way to per-

form symmetry classification by calling just this procedure, so that a

user doesn’t need to call all the procedures described above to com-

plete a classification.

This procedure requires a pdeRecord which is created by calling the

constructor (newPDESys). This pdeRecord does not have to be com-

plete. It returns a rif-output. The returned rif-output can then be

displayed by calling CasePlot.

This procedure also has other options such as specifying infinites-

imals, rankings for both infinitesimals and arbitrary elements, and

pivot select option. It first checks if the procedures detEqsForSymm

and detEqsForEquiv need to run, then it runs SymmetricRifsimp ac-

cording to the user ranking and pivot select option (use default rank-

ing if none are specified).

5.3 Examples

We will demonstrate the use of the SymmetryClassification package by

working through some examples.

5.3.1 1+1 Richards Equation

Consider the example of 1+1 Richards equation in potential form

vx = u, vt = B(u)ux − K(u) (5.1)

104

5.3 Examples

where u, v are functions of (x, t), while B(u), K(u) are arbitrary elements

with constraint B(u) 6= 0. The associated vector field is

Y = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ φ

∂

∂v
+ β

∂

∂B
+ κ

∂

∂K
(5.2)

where ξ, τ, η, φ depend on (x, t, u, v) and β, κ depend on (x, t, u, v, B, K).

In this example, we will examine how to use the ICM method to clas-

sify symmetries by using procedures in the SymmetryClassification pack-

age, based on the two applications (i.e. labelling pivots & guiding rifsimp)

described in the previous section.

Let DE be assigned to be the Richards equation (5.1),

DE:=[diff(v(x,t),x) = u(x,t),

diff(v(x,t),t) = B(u)*diff(u(x,t),x) - K(u)];

with constraint B(u) 6= 0,

sysConstraint:= [B(u)<>0];

Recalling Figure 5.3, before we call SymmetricRifsimp to classify symme-

tries, we need to create a pdeRecord and have all fields assigned.

(i) Constructor – Create a pdeRecord: To create a pdeRecord we call the

constructor newPDESys:

rec:= newPDESys(DE,constraint = sysConstraint);

This returns a new pdeRecord named rec in this example. This pdeRecord

has information in these two fields: sys and constraint.

(ii) Pre-step procedures – Complete the pdeRecord: Next, we need to

derive the determining equations for both symmetries and equivalence

group, and complete the pdeRecord, meaning that the information for the

105

5.3 Examples

two fields detSymm & detEquiv are assigned in rec (see §5.2.2). The vector

field (5.2) is specified by

vf:=[[x,xi], [t,tau], [u,eta], [v,phi], [B,beta], [K,kappa]];

We call detEqsForSymm to derive the determining equations for symme-

tries:

detEqsForSymm(rec, infinitesimals = vf);

This fills in information in detSymm field in rec.

We also derive the determining equations for the equivalence group

(for both actions) by calling detEqsForEquiv:

detEqsForEquiv(rec, infinitesimals = vf);

This fills in information in the field detEquiv in rec.

After the two fields detSymm and detEquiv are assigned in rec, the

pdeRecord is complete. So, now it is time to classify symmetries.

Application 1 (iii,iv) – Run SymmetricRifsimp without ‘invariant’; la-

bel pivots, and display: In this approach, we illustrate the application 1

which is to label pivots from a classification tree. So, first we need to call

SymmetricRifsimp without ‘invariant’ pivot selection enabled (which is

the same as calling rifsimp). SymmetricRifsimp requires a list of DEs

(e.g. the determining equations for symmetries and the constraint) and

the ranking. Let detSys be

detSys:=[op(rec:-detSymm:-sys), op(rec:-constraint:-sys)];

where rec:-detSymm:-sys means the list of DEs sys under field detSymm

which is stored in rec, and rec:-constraint:-sys is the constraint system

(i.e. [B(u)<>0]).

Let the ranking be {B} � {K} � {φ, ξ, τ, η}, or in Maple syntax

106

5.3 Examples

ranking:=[[eta, tau, xi, phi],[K],[B]];

We call SymmetricRifsimp by

rifSys:=SymmetricRifsimp(detSys, ranking, casesplit);

It returns a rif-output rifSys and it shows there are 17 cases.

We would now like to check invariance under the equivalence group

of all pivots in the rif-output rifSys and label them. To do this we call

AddInvtInfo: this procedure requires the rif-output rifSys, the sub-field

arbvarsAction under detEquiv and a list of arbitrary elements (as found

in rec:-detSymm:-arbvars):

rifSys:=AddInvtInfo(rifSys,rec:-detEquiv:-arbvarsAction,

rec:-sys:-arbvars);

It returns an updated rif-output rifSys. Last, we call CasePlot to display

the rif-output graphically (see §5.2.4). And to ask CasePlot to display di-

mension of the symmetry group in each case, we provide a list of infinites-

imals (excluding infinitesimals from the arbitrary elements),

CasePlot(rifSys, vars=[xi, tau, phi, eta]);

According to Figure 5.4, one non-invariant splitting condition (p4 = 0)

is picked up during early splits. For p4, the left branch and the right

branch are very similar (i.e. they both have cases which have 3, 4, and 5

symmetries), it is very possible that both branches are in fact connected by

an equivalence transformation. Therefore, p4 is a bad splitting and gives

more redundant splittings (e.g. p6). This is because normal rifsimp does

not take account of the equivalence group.

Application 2 (iii,iv) – Run SymmetricRifsimp with ‘invariant’, and dis-

play: Our next approach is to guide rifsimp to classify symmetries which

107

5.3 Examples

Figure 5.4: Classification tree for the 1+1 Richards equation, completed by
calling SymmetricRifsimp with ranking {B} � {K} � {ξ, τ, η, φ} and de-
fault pivot selection strategy. The case splitting conditions are p1, . . . , p14.
Invariant splitting conditions are displayed in bold, others in italic.

respect the equivalence group, by applying the ICM method. All we need

to do is to set the ‘invariant’ pivot selection option for symmetricRifsimp,

rifInvtSys:=SymmetricRifsimp(detSys,ranking,casesplit,

pivselect=[’invariant’,rec:-detEquiv:-arbvarsAction,

rec:-sys:-arbvars]);

The rif-output rifInvtSys now contains invariance information on pivots,

so we can just call CasePlot again to display the classification tree,

CasePlot(rifInvtSys, vars=[xi, tau, phi, eta]);

The new classification tree (see Figure 5.5) now has only 14 cases.

By using the ICM method, the new classification tree has avoided the

bad splitting which we had by ordinary rifsimp (p4 in Figure 5.4). Al-

though there are still some redundant case splittings (e.g. p6, p13 which

108

5.3 Examples

Figure 5.5: Classification tree for 1+1 Richards equation, completed by
calling SymmetricRifsimp with pivot select option ‘invariant’. Invariant
splitting conditions are displayed in bold, others in italic. The numbering
of the splitting conditions is not identical to Fig. 5.4.

are marked as non-invariant), these splittings are pushed down towards

the leaves of the classification tree, so the classification tree is as invariant

as possible. As a result, the number of cases in the classification tree has

dropped by 3.

We now make some comment about performance. On an ordinary lap-

top, plain rifsimp took 8.1 sec to classify symmetries of the 1+1 Richards

equation; but AddInvtInfo only needed 0.4 sec to add invariance proper-

ties to this classification (less than 5% time penalty). In fact, AddInvtInfo

can check invariance of all 13 pivots in less time than DeterminingPDE

takes (0.7 sec) to find determining equations of one pivot condition. With

invariant pivot selection enabled, SymmetricRifsimp took 9.1 sec to com-

plete classification. So the improved tree of Figure 5.5 is found with only

109

5.3 Examples

a 12% time penalty. This shows that the ICM method in this case is quite

efficient.

5.3.2 Linear Hyperbolic Equation with Laplace Invariants

Consider the linear hyperbolic equation [48, §9],

zxy + A(x, y)zx + B(x, y)zy + C(x, y)z = 0 (5.3)

where z depends on (x, y) and A(x, y), B(x, y), C(x, y) are arbitrary ele-

ments. Let the corresponding vector field be

Y = ξ
∂

∂x
+ φ

∂

∂y
+ ζ

∂

∂z
+ α

∂

∂A
+ β

∂

∂B
+ χ

∂

∂C

where ξ, φ, ζ depend on (x, y, z) and α, β, χ on (x, y, z, A, B, C).

If we compare with the previous example in §5.3.1, this DEs system (5.3)

is more complicated because it involves three arbitrary elements. After de-

riving the determining equations for point symmetries for the system (5.3),

unfortunately rifsimp fails to classify symmetries due to time/memory

usage. This is due to the complexity of the splitting conditions, it may

also be because rifsimp chooses bad splitting conditions, causing more

unnecessary splits.

One way we could help rifsimp to classify symmetries is to use invari-

ants from the equivalence group of the system (5.3),

x′ = f (x) (5.4a)

y′ = g(y) (5.4b)

z′ = w(x, y)z (5.4c)

110

5.3 Examples

where f (x), g(y), and w(x, y) are arbitrary functions. The Laplace invari-

ants [48, §9.2]

h(x, y) = Ax + AB− C, k(x, y) = By + AB− C (5.5)

are derived from equation (5.4c) of the equivalence group. This pair of

Laplace invariants can give a big hint to rifsimp so it can make better

decisions in choosing splitting conditions.

In the SymmetryClassification package, we allow to have additional

information for the system. The equations (5.5) for Laplace invariants can

be stored into the pdeRecord as a constraint system, with the variables h, k

being treated as arbitrary elements.

So, let the system sys (5.3) be

sys:=[diff(z(x,y),x,y) + A(x,y)*diff(z(x,y),x)

+ B(x,y)*diff(z(x,y),y) + C(x,y)*z(x,y) = 0];

with the Laplace equations (5.5)

laplaceEqs:=[h(x,y) = diff(A(x,y),x)+A(x,y)*B(x,y)-C(x,y),

k(x,y) = diff(B(x,y),y)+A(x,y)*B(x,y)-C(x,y)];

We first create a pdeRecord for the system (5.3),

rec := newPDESys(sys, constraint=laplaceEqs);

After assigning detSymm and detEquiv fields in the pdeRecord by calling

detEqsForSymm and detEqsForEquiv, we call SymmetricRifsimp to classify

symmetries.

By having the Laplace invariants in the DEs system (5.3), we would like

to ask SymmetricRifsimp to split on h, k (the Laplace invariants) as much

as possible. Therefore, we need to make sure h, k (and A, B, C) are ranked

lower than other variables (e.g. {h, k, A, B, C} � {ζ, ξ, φ}). Therefore,

111

5.3 Examples

ranking := [[zeta, xi, phi],[h, k, A, B, C]];

We now run SymmetricRifsimp with this ranking, then label all pivots

from the rif-output, the result is shown in Figure 5.6,

With the help of Laplace invariants (5.5), SymmetricRifsimp is able to

classify symmetries with total of 21 cases. All the splitting conditions are

in terms of h, k, and they are all invariant under the equivalence group

(5.4).

112

5.3 Examples

Fi
gu

re
5.

6:
Sy

m
m

et
ry

cl
as

si
fic

at
io

n
fo

r
lin

ea
r

hy
pe

rb
ol

ic
eq

ua
ti

on
.

In
tr

od
uc

in
g

th
e

La
pl

ac
e

in
va

ri
an

ts
he

lp
s

S
y
m
m
e
t
r
i
c
R
i
s
i
m
p

to
be

ab
le

to
co

m
pl

et
e

sy
m

m
et

ry
cl

as
si

fic
at

io
n.

So
m

e
sp

lit
ti

ng
co

nd
it

io
ns

ar
e

st
ill

co
m

pl
ic

at
ed

.
Fo

r
ex

am
pl

e,
th

e
lo

ng
es

t
is

p 1
7

=
(a

pp
ro

x
10

0
te

rm
s)

.
A

ll
sp

lit
ti

ng
co

nd
it

io
ns

ar
e

te
st

ed
to

be
in

va
ri

an
t

un
de

r
ac

ti
on

of
eq

ui
va

le
nc

e
gr

ou
p.

113

114

Chapter 6

Conclusion

In conclusion, we have successfully reached our goal of helping a differ-

ential reduction and completion (DRC) method like RIF to improve sym-

metry classification by making the classification tree to be invariant under

the equivalence group as much as possible. The whole method works at

the level of determining equations.

To make this happen there were a number of tasks needed to be done

first. We developed an invariance checking method (ICM) for testing in-

variance of given DEs under a group specified by determining equations.

(In our case it is the equivalence group, see §4.3). This in turn requires

reformulating the symmetry condition as in §4.2. The ICM method also

requires the equivalence group in arbitrary elements space, which means

we had to work out how to project the equivalence group determining

equations as described in §4.1. With these tasks completed, we were able

to apply the ICM method in RIF to check case splitting DEs for invariance

(see §4.4).

A Maple package SymmetryClassification was developed for classi-

fying point symmetries using rifsimp. To make this happen, a number of

115

6. Conclusion

required tasks as listed in §5.1 had to be done. First, we had to write code

to derive the equivalence group determining equations (see §2.3), and to

project the determining equations to the action on arbitrary elements. Sec-

ond, we implemented the ICM method as a service procedure. Finally,

we modified rifsimp so it uses the ICM method to select ‘invariant’ case

splitting DEs during classification.

When implementing the SymmetryClassification package in Maple,

we took care to base its design on good software design principles [46].

The code is well structured, and is easy to extend and adapt to other pro-

grams. We use the Maple module construct to carefully control the scope of

variables and to make sure there are no global side effects. All information

on a DE system is structured together as a module, so that this informa-

tion can be passed from one procedure to another. The code implementa-

tion of the ICM method newProlongation is independent of the package.

It would therefore be easy to adapt to other DRC Maple packages such

as diffalg (which uses Rosenfeld-Gröbner algorithm). This gives an ad-

vantage for the ICM method to be integrated as part of future release of

Maple.

We illustrated the SymmetryClassification Maple package by work-

ing through examples in §5.3. The example of §5.3.1 showed the classi-

fication improves when invariant case splitting DEs are selected. Also for

another example, we are able to use differential invariants as constraints to

the DE system to ensure rifsimp succeeded completed classification. The

examples also showed the package is efficient when the invariance option

is enabled, adding only a few seconds to the execution time of normal

classification.

A good feature of the SymmetryClassification package is that users

116

6. Conclusion

only need to provide very little information – just a DE system. In partic-

ular, the equivalence group doesn’t have to be given. The package is able

to algorithmically work out the rest of needed information such as deter-

mining equations for symmetries and equivalence group, valid ranking

etc. by itself. The reason the package can do this is that it is working on

the level of determining equations, there is no need to find explicit solu-

tions of PDEs. The steps of invariance checking (during or after symmetry

classification) only involves differentiation and reduction, which is purely

algorithmic. That is why the method is well suited to computer algebra.

However, there are some issues of using a DRC method in symmetry

classification which still remain. When a DE system is complicated, the

DRC method rifsimp often causes a problem of expression swell during

classifying symmetries. Expression swell is a common problem in sym-

metry classification. Also based on the experience with using rifsimp, the

choice of ranking used for reducing of the determining equations has a

very strong influence on the outcome, and this is still true when our in-

variance checking is used.

There is an additional issue that comes up in invariance checking. If

a splitting condition is an algebraic equation (no derivatives) then the in-

finitesimal methods of symmetry analysis do not work reliably.

There are geometric methods [38, 16, 17] which can be applied to sym-

metry classification problem, in a way that is invariant under the equiva-

lence group. This would overcome the problem of expression swell. There

exists DRC algorithms which can do geometric invariant calculation, by

using non-commuting differential operators [26, 43]. However these geo-

metric methods start with an explicit parameterisation of the equivalence

group. Using our method, we don’t need such a parameterisation, which

117

6. Conclusion

is a significant advantage of our method.

The ICM method could also be applied to other DRC method such

as Rosenfeld-Gröbner rather than RIF algorithm. Also,the method can

test invariance of DEs under action of some other groups (no need to be

equivalence group), which gives various way to use the method in some

fields other than symmetry classification.

Further Development Due to the limited time on the project, the pack-

age SymmetryClassification is subject to restrictions that could be re-

moved with some more work. First, the package only allows the user to

have ‘smalleq’ as the invariant pivot selection strategy. With some further

work on the package, it should be able to provide other invariant pivot

selection strategies such as smallpiv or lowrank [66, help on rifsimp,

cases].

Secondly, the form of arbitrary elements is restricted – the elements

are only allowed to depend on independent and dependent variables (not

derivatives); and derivatives of the arbitrary elements may not appear.

Although introducing appropriate constraint equations can get around

this restriction, it would be desirable to remove the restriction completely.

Thirdly, in the SymmetryClassification package, case splitting DEs

in symmetry classification are assumed to generate a radical ideal. This

may not be true in rare cases. Therefore, further work to the package is to

provide a conversion method to ensure these case splitting DEs generate a

radical ideal.

The methods described in this thesis should have wider application.

The idea of finding conservation laws is similar to the problem of finding

symmetries [47]. In particular, the ‘multipliers’ for the conservation laws

118

6. Conclusion

obey linear homogeneous determining equations [2]. Also, where there is

a class of DEs containing arbitrary elements, we have a classification prob-

lem for conservation laws which has a good analogy to the classification

problem for symmetries. In particular, the equivalence group plays sim-

ilar roles as applied to symmetries [6]. Therefore, we would expect the

ICM method should be able to apply to conservation laws, and it should

behave in a similar way.

119

120

References

[1] W. AMES, ed., Proceedings 14th IMACS World Congress on Com-

putational and Applied Mathematics, Atlanta, Georgia, vol. 1, New

Brunswick, New Jersey, 1994, IMACS.

[2] S. ANCO AND G. BLUMAN, Direct construction method for conservation

laws of partial differential equations Part II: General treatment, Euro. J.

Appl. Maths., 13 (2002), pp. 567–585.

[3] S. C. ANCO AND T. WOLF, Some symmetry classifications of hyperbolic

vector evolution equations, J. Nonlinear Math. Phys., 12 (2005), pp. 13–

31.

[4] P. BASARAB-HORWATH, V. LAHNO, AND R. ZHDANOV, The structure

of Lie algebras and the classification problem for partial differential equa-

tions, Acta Appl. Math., 69 (2001), pp. 43–94.

[5] G. BLUMAN AND S. KUMEI, Symmetries and differential equations,

Springer-Verlag, New York, 1989.

[6] G. BLUMAN AND TEMUERCHAOLU, Conservation laws for nonlinear

telegraph equations, J. Math. Anal. Appl., 310 (2005), pp. 459–476.

121

References

[7] F. BOULIER, D. LAZARD, F. OLLIVIER, AND M. PETITOT, Representa-

tion for the radical of a finitely generated differential ideal, in Proc. ISSAC

’95, New York, 1995, ACM Press.

[8] V. V. BUBLIK, Group classification of the Navier-Stokes equations for com-

pressible viscous heat-conducting gas, in Computer algebra in scientific

computing (Samarkand, 2000), Springer, Berlin, 2000, pp. 61–67.

[9] B. CANTWELL, Introduction to symmetry analysis, Cambridge Univ.

Press, Cambridge, 2002.

[10] J. CARMINATI, J. S. DEVITT, AND G. J. FEE, Isogroups of differen-

tial equations using algebraic computing, J. Symb. Comput., 14 (1992),

pp. 103–120.

[11] G. CARRÀ-FERRO, Differential Gröbner bases in one variable and in the

partial case, Math. Comput. Model., 25 (1997), pp. 1–10.

[12] B. CHAMPAGNE, W. HEREMAN, AND P. WINTERNITZ, The computer

calculation of Lie point symmetries of large systems of differential equations,

Comp. Phys. Comm., 66 (1991), pp. 319–340.

[13] A. F. CHEVIAKOV, GeM software package for computation of symmetries

and conservation laws of differential equations, Comp. Phys. Comm., 176

(2007), pp. 48–61.

[14] G. CICOGNA, Symmetry classification of quasi-linear PDE’s containing

arbitrary functions, Nonlinear Dynam., 51 (2007), pp. 309–316.

[15] D. COX, J. LITTLE, AND D. O’SHEA, Ideals, Varieties, and Algorithms:

An introduction to computational algebraic geometry and commutative al-

gebra, Springer Verlag, New York, 1992.

122

References

[16] M. FELS AND P. OLVER, Moving coframes: I A practical algorithm, Acta.

Appl. Math., 51 (1998), pp. 161–213.

[17] , Moving coframes: II. Regularization and theoretical foundations,

Acta. Appl. Math., 55 (1999), pp. 127–208.

[18] L. GAGNON AND P. WINTERNITZ, Non-Painlevé reductions of nonlinear

Schrödinger equations, Physical Review. A, General physics, 42 (1990),

pp. 5029 – 5030.

[19] M. L. GANDARIAS AND N. H. IBRAGIMOV, Equivalence group of a

fourth-order evolution equation unifying various non-linear models, Com-

mun. Nonlinear. Sci. Numer. Simulat., 13 (2008), pp. 259–268.

[20] R. GARDNER, The method of equivalence and its applications, vol. CBMS-

NSF 58, SIAM, Philadelphia, PA, 1989.

[21] F. GUNGOR, V. I. LAHNO, AND R. Z. ZHDANOV, Symmetry classifica-

tion of KdV-type nonlinear evolution equations, J. Math. Phys., 45 (2004),

pp. 2280 – 2313.

[22] A. HEAD, LIE: A PC program for Lie analysis of differential equations,

Comp. Phys. Comm., 77 (1993), pp. 241–248.

[23] W. HEREMAN, Review of symbolic software for the computation of Lie

symmetries of differential equations, Euromath Bulletin, 1 (1994), pp. 45–

79.

[24] W. HEREMAN, Symbolic software for Lie symmetry analysis, in Ibragi-

mov [29], ch. 13.

123

References

[25] D.-J. HUANG AND N. M. IVANOVA, Group analysis and exact solu-

tions of a class of variable coefficient nonlinear telegraph equations, J. Math.

Phys., 48 (2007), p. 073507.

[26] E. HUBERT, Differential algebra for derivations with nontrivial commuta-

tion rules, J. Pure Appl. Alg., 200 (2005), pp. 163–190.

[27] P. HYDON, Symmetry methods for differential equations: A beginner’s

guide, Cambridge Univ. Press, Cambridge, 2000.

[28] N. IBRAGIMOV, ed., CRC handbook of Lie group analysis of differential

equations, vol. 1: Symmetries, exact solutions and conservation laws,

CRC Press, Boca Raton, 1994.

[29] , ed., CRC handbook of Lie group analysis of differential equations,

vol. 3: New Trends in Theoretical Developments and Computational

Methods, CRC Press, Boca Raton, 1995.

[30] , ed., CRC handbook of Lie group analysis of differential equations,

vol. 2: Applications in Engineering and Physical Sciences, CRC Press,

Boca Raton, 1995.

[31] N. H. IBRAGIMOV, S. V. MELESHKO, AND E. THAILERT, Invariants of

linear parabolic differential equations, Commun. Nonlinear. Sci. Numer.

Simulat., 13 (2008), pp. 277–284.

[32] N. H. IBRAGIMOV AND M. TORRISI, Equivalence groups for balance

equations, J. Math. Anal. Appl., 184 (1994), pp. 441–452.

[33] T. A. IVEY AND J. LANDSBERG, Cartan for beginners: differential geom-

etry via moving frames and exterior differential systems, American Math-

ematical Society, 2003.

124

References

[34] M. KURANISHI, On E. Cartan’s prolongation theorem of exterior differen-

tial systems, Amer. J. Math., 79 (1957), pp. 1–47.

[35] V. LAHNO, R. ZHDANOV, AND O. MAGDA, Group classification and

exact solutions of nonlinear wave equations, Acta Appl. Math., 91 (2006),

pp. 253–313.

[36] S. LIE, Über die Integration durch bestimmte Integrale von einer Klasse

linearer partieller Differentialgleichungen, Arch. für Math., VI (1881),

pp. 328–368.

[37] I. LISLE AND J.-Y. PARLANGE, Analytical reduction for a concentration

dependent diffusion problem, Zeitschrift für Angewandte Mathematik

und Physik, 44 (1993), pp. 85–102.

[38] I. LISLE AND G. REID, Symmetry classification using noncommutative

invariant differential operators, Found. Comp. Math., 6 (2006), pp. 353–

386.

[39] F. M. MAHOMED, Symmetry group classification of ordinary differential

equations: survey of some results, Math. Methods Appl. Sci., 30 (2007),

pp. 1995–2012.

[40] E. MANSFIELD, Differential Gröbner bases, PhD thesis, University of

Sydney, 1991.

[41] E. MANSFIELD, DIFFGROB2: A symbolic algebra package for analyzing

systems of PDE using Maple. User’s manual for release 2., tech. report,

Department of Mathematics, University of Exeter, Exeter, UK, 1993.

[42] E. MANSFIELD AND P. CLARKSON, Applications of the differential alge-

bra package DIFFGROB2 to reductions of PDE, in Ames [1], pp. 336–339.

125

References

[43] E. L. MANSFIELD, Algorithms for symmetric differential systems, Found.

Comp. Math., 1 (2001), pp. 335–383.

[44] E. L. MANSFIELD AND P. A. CLARKSON, Applications of the differential

algebra package diffgrob2 to classical symmetries of differential equations,

J. Symb. Comput., 23 (1997), pp. 517–533.

[45] S. MELECHKO, Generalization of the equivalence transformations, J. Non-

linear Math. Phys., 3 (1996), pp. 170–174.

[46] B. MEYER, Object-oriented software construction, Prentice Hall, 2nd ed.,

1997.

[47] P. OLVER, Application of Lie groups to differential equations, Springer-

Verlag, New York, 2nd ed., 1993.

[48] L. V. OVSIANNIKOV, Group analysis of differential equations, Academic

Press, New York, 1982.

[49] J.-F. POMMARET, ed., Proceedings ERCIM Advanced Course on Partial

Differential Equations and Group Theory, Sankt Augustin, Germany,

1992, Gesellschaft für Mathematik and Datenverarbeitung.

[50] G. REID, Algorithmic determination of Lie symmetry algebras of differential

equations, in Lie Theory, Differential Equations and Representation

Theory, V. Hussin, ed., Montréal, Canada, 1990, Proc. Annual Semi-

nar of the Canadian Math. Soc., Publications de Centre de Recherches

Mathématiques, pp. 363–372.

[51] , A triangularization algorithm which determines the Lie symmetry

algebra of any system of PDEs, J. Phys., A23 (1990), pp. L853–859.

126

References

[52] , Algorithms for reducing a system of PDEs to standard form, deter-

mining the dimension of its solution space and calculating its Taylor series

solution, Euro. J. Appl. Maths., 2 (1991), pp. 293–318.

[53] G. REID, I. LISLE, A. BOULTON, AND A. WITTKOPF, Algorithmic de-

termination of commutation relations for Lie symmetry algebras of PDEs,,

in Proc. ISSAC ’92, New York, 1992, ACM Press, pp. 63–68.

[54] G. REID, A. WITTKOPF, AND A. BOULTON, Reduction of systems of

nonlinear partial differential equations to simplified involutive forms, Euro.

J. Appl. Maths., 7 (1996), pp. 604–635.

[55] R. ROGERS AND M. RENARDY, An introduction to partial differential

equations, Springer, 1993.

[56] C. RUST, Rankings of derivatives for elimination algorithms and formal

solvability of analytic partial differential equations, PhD thesis, University

of Chicago, 1998.

[57] F. SCHWARZ, The Riquier-Janet theory and its application to nonlinear

evolution equations, Physica, D11 (1984), pp. 243–251.

[58] , Automatically determining symmetries of differential equations,

Computing, 34 (1985), pp. 91–106.

[59] , An algorithm for determining the size of symmetry groups, Comput-

ing, 49 (1992), pp. 95–115.

[60] , Reduction and completion algorithms for partial differential equations,

in Proc ISSAC ’92, New York, 1992, ACM Press, pp. 49–56.

[61] , Algorithmic Lie theory for solving ordinary differential equations,

Chapman and Hall/CRC, Boca Raton, FL, 2008.

127

References

[62] L. SHAMPINE, Some singular concentration dependent diffusion problems,

Zeitschrift für angewandte Mathematik und Mechanik, 53 (1973),

pp. 421–422.

[63] J. SHERRING, A. K. HEAD, AND G. E. PRINCE, Dimsym and LIE:

symmetry determination packages, Math. Comput. Model., 25 (1997),

pp. 153–164. Algorithms and software for symbolic analysis of non-

linear systems.

[64] J. SHERRING AND G. PRINCE, DIMSYM – symmetry determination

and linear partial differential equations package, Dept. of Mathematics

Preprint, La Trobe University, Australia, 1992.

[65] P. VAFEADES, PDELIE: Symbolic software for the analysis of partial differ-

ential equations by Lie group methods, User’s manual. Preprint, Depart-

ment of Engineering Sciences, Trinity University, San Antonio, Texas,

1994.

[66] WATERLOO MAPLE SOFTWARE, 2009. Maple 13. Software package.

[67] A. WITTKOPF, Algorithms and implementations for differential elimina-

tion, PhD thesis, Department of Mathematics, Simon Fraser Univer-

sity, Canada, 2004.

[68] T. WOLF AND A. BRAND, The computer algebra package CRACK for

investigating PDEs, in Pommaret [49], pp. 1–19.

[69] I. YAGLOM, Felix Klein and Sophus Lie, Birkhäuser, Boston, 1988.

[70] D. ZWILLINGER, Handbook of differential equations, Academic Press,

2nd ed., 1992.

128

Appendix A

The SymmetryClassification

Package

The SymmetryClassification package as described in §5 was implemented

in Maple, and consists of approximately 3000 lines of code. The help pages

of this package are included in the following pages.

Like most software projects, the SymmetryClassification package is

built based on prior projects. In the Maple source code, the function

SymmetricRifsimp is a modified version of rifsimp, originally written by

Dr. Allan Wittkopf and Dr. Greg Reid, and modified with their permis-

sion. The functions newProlongation and CasePlot and their help pages

are written by Dr. Ian Lisle. CasePlot was adapted from a project done in

previous degree. One of the local service procedure dsubs was included

from Maple version 9.5, it was to circumvent bugs in later versions.

129

A. The SymmetryClassification Package

•

•

•

2.
1.
•

•

3.

Overview of the SymmetryClassification Package

Calling Sequence
 SymmetryClassification[command](arguments)
 command(arguments)

Description
The SymmetryClassification package provides a suite of commands to classify
symmetries of a system of differential equations (DEs) containing arbitrary
elements.
The package utilises symmetry tools in the PDEtools package as well as a modified
version of rifsimp.
The steps in symmetry classification using this package are:
Derive the determining equations for point symmetries of the given DEs system.
Use differential reduction & completion (DRC) algorithm (i.e. rifsimp) to classify
symmetries.
Solve classified determining equations to get the symmetries of the given DEs
system.
Note that step (3) is not included in the package. However, it can be done by
pdsolve.

The SymmetryClassification package can check whether case splittings that arise
during classification are invariant under the equivalence group of the given DEs
system.
The following is a list of available commands.

newPDESys This is a constructor function, which creates a
pdeRecord data structure for storing information
about the given DEs system.

detEqsForSymm Derive the determining equations for point
symmetries of the given DEs system.

detEqsForEquiv Derive the determining equations of the
equivalence group of the given DEs system.

newProlongation This is a constructor function, which creates a
module for working with the prolongation of a
vector field.

SymmetricRifsimp This is a modified version of rifsimp. It works
exactly the same as rifsimp but it provides an
additional option for using invariance properties in

130

A. The SymmetryClassification Package

•

•

O

O

•

(2.2)

•

O

•

(2.1)

symmetry classification.

AddInvtInfo Append invariance properties into a symmetry
classification tree.

classifySymmetry This is a front end procedure, which performs
symmetry classification via a single function call.

CasePlot This is a modified version of caseplot . It presents a
symmetry classification tree graphically, optionally
showing invariance properties of the case splits.

The package uses a container structure [see pdeRecord] designed for storing various
information about the given DEs system. This structure is used by other commands
in the SymmetryClassification package.
The package works at the level of determining equations. To explicitly find vector
fields for symmetries or equivalence transformations, use pdSolve to solve the
determining equations.
For details of the symmetry classification problem, the equivalence group and many
examples, see N.H. Ibragimov (1994), "CRC Handbook of Lie Group Analysis of
DEs" vol 1.
Each command in the SymmetryClassification package can be accessed by using
either the long form or the short form of the command name in the command calling
sequence
As the underlying implementation of the SymmetryClassification package is a
module, it is also possible to use the form SymmetryClassification:-command to
access a command from the package. For more information, see Module Members.

Examples
with(SymmetryClassification);

AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,
detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation

(1+1) Nonlinear Heat Equation
Consider (1+1) Nonlinear Heat Equation...

PDE := [diff(u(x,t),t) + diff(q(x,t),x) = 0, q(x,t)
= -K(u(x,t))*diff(u(x,t),x)];

PDE :=
v

vt
 u x, t C

v

vx
 q x, t = 0, q x, t =KK u x, t

v

vx
 u x, t

The arbitrary element is the diffusivity function K u . First call the constructor to
create a pdeRecord structure, specifying that K u s 0.

NHEq:= newPDESys(PDE, constraint=[K(u)<>0]);

131

A. The SymmetryClassification Package

O

O

(2.3)

(2.4)

O

NHEq :=
v

vt
 u x, t C

v

vx
 q x, t = 0, q x, t =KK u x, t

v

vx
 u x,

t &where K u s 0

Although NHEq prints as though it is a list of equations, it is actually a module data
structure containing various kinds of information about the DEs system.
2. Use the front end command to perform symmetry classification for Nonlinear Heat
Equation. It returns a table structure as returned by rifsimp.

HEqRif:=classifySymmetry(NHEq, infinitesimals=[[x,
xi], [t,tau], [u,eta], [q,chi], [K,kappa]]):

3. The rif-output (HEqRif) can be displayed by calling CasePlot.
CasePlot(HEqRif, vars=[xi,tau,eta,chi]);

Case 1 Case 2

Case 3

Case 4

Case 5

3-d 4-d

4-d

5-d

inf-d

≠

≠

≠

≠ =

=

=

=

The call to classifySymmetry inserted additional information into the
pdeRecord structure. For example the determining equations for the symmetries
are now present:

print(NHEq:-detSymm);

1
K u 2

v

vx
 η x, t, q, u K u 2

Kq
v

vu
 η x, t, q, u K u Cχ x, t,

q, u K u Cq
v

vx
 ξ x, t, q, u K u Kq2

v

vu
 ξ x, t, q, u Kη x,

132

A. The SymmetryClassification Package

t, q, u q d
du

 K u = 0,
v

vq
 τ x, t, q, u = 0, 1

K u
v

vx
 τ x,

t, q, u K u C
v

vq
 η x, t, q, u K u Kq

v

vu
 τ x, t, q, u

K
v

vq
 ξ x, t, q, u = 0, 1

K u
K

v

vt
 η x, t, q, u K u

K
v

vx
 χ x, t, q, u K u Cq

v

vu
 χ x, t, q, u K

v

vt
 ξ x, t, q,

u = 0,
v

vu
 η x, t, q, u C

v

vx
 ξ x, t, q, u K

v

vt
 τ x, t, q, u

K
v

vq
 χ x, t, q, u = 0,

v

vq
 ξ x, t, q, u C

v

vu
 τ x, t, q, u = 0,

1
K u

v

vx
 τ x, t, q, u K u K

v

vq
 η x, t, q, u K u

Kq
v

vq
 ξ x, t, q, u C

v

vu
 τ x, t, q, u = 0 &where K u s 0

See Also
pdeRecord, PDEtools:-DeterminingPDE, DEtools[rifsimp], Module, UsingPackages,
with

133

A. The SymmetryClassification Package

•

•

•

•

•

•

•

SymmetryClassification/pdeRecord - data structure for storing
information about a DEs system containing arbitrary elements

Description
A pdeRecord is a storage container for holding various kinds of information about a
differential equations (DEs) system containing arbitrary elements. A pdeRecord is
designed to suit the needs of various functions in the SymmetryClassification
package.

A pdeRecord is created by calling the constructor function newPDESys.

A pdeRecord is a module, but is used primarily to store data. The only functions
exported by a pdeRecord module are print methods.
All the data fields exported by a pdeRecord are modules themselves. The
information can be accessed by

 pdeRecordName:-fieldName:-subFieldName:- ...;

A pdeRecord stores two types of DE information: (1) user-specified information
about a given DEs system, (2) additional information assigned by functions in the
SymmetryClassification package (for example, the determining equations for
symmetries and for equivalence group). These are arranged as four fields:

pdeRecord:-

 sys DEs system -- specified by user

constraint

Constraint system (constraints on arbitrary elements) -
- specified by user

 detSymm Determining equations for point symmetries of DEs
system -- assigned by calling detEqsForSymm

detEquiv

Determining equations for the equivalence group of
DEs system -- assigned by calling detEqsForEquiv

The detEquiv field consists of two sub-fields: fullAction as the determining
equations for equivalence group acting on space of all variables and
arbvarsAction as the determining equations for equivalence group acting on
space of arbitrary elements only.
After all four fields are assigned, the complete pdeRecord can then be used by
procedures SymmetricRifsimp and AddInvtInfo.

134

A. The SymmetryClassification Package

• Each field or its sub-field contains four basic entries: sys as system itself, indep
as independent variables of system, dep as dependent variables of system and
arbvars as arbitrary elements (if needed).

Field "sys"
The information for field sys is assigned when the pdeRecord is created by calling
newPDESys. This field contains information on the DEs system and its independent
and dependent variables and arbitrary elements. Detail descriptions are listed as
follows:

pdeRecord:-sys:-

 sys The DEs system, a list of equations.

 indep Independent variables for the DEs system, a list of
names.

 dep Dependent variables for the DEs system, a list of
function of names.

arbvars

 Arbitrary elements for the DEs system, a list of
function of names.

Field "constraint"
The information for field constraint is assigned when the pdeRecord is created by
calling newPDESys. This field contains information on the constraints satisfied by the
arbitrary elements, such as independent and dependent variables. Detailed description
is as follows:

pdeRecord:-constraint:-

 sys Constraints on the arbitrary elements for the DEs
system, a list of equations or inequations.

 indep Independent variables for the constraints, a list of
names.

 dep Dependent variables for the constraints, a list of
function of names.

Field "detSymm"
Information for field detSymm is assigned when the function detEqsForSymm is

135

A. The SymmetryClassification Package

called. This field contains information on the determining equations for point
symmetries of the DEs and its independent & dependent variables and arbitrary
elements. Detailed description is as follows:

pdeRecord:-detSymm:-

 sys Determining equations for symmetries for the DEs
system, a list of equations.

indep

Independent variables for the determining system, a list
of names.

 dep Dependent variables for the determining system, a list of
function of names.

arbvar
s

Arbitrary elements for the determining system, a list of
function of names.

Field "detEquiv"
Information for field detEquiv is assigned when the function detEqsForEquiv is
called. This field contains information on the determining equations for the
equivalence group of the DEs system on two different spaces which are represented as
two sub-fields:

pdeRecord:-detEquiv:-

fullAction

Determining equations for equivalence group on
space of all variables.

arbvarsAct
ion

Determining equations for equivalence group on
space of arbitrary elements.

Each sub-field contains the determining equations for the equivalence group of the
DEs system, and independent and dependent variables from these determining
equations. Detailed description is as follows:

pdeRecord:-detEquiv:-fullAction:-

 sys Determining equations for equivalence group from the
DEs system, a list of equations.

 Independent variables of determining equations for

136

A. The SymmetryClassification Package

O

(6.3)

(6.2)

O

O

O

O

(6.1)

indep equivalence group, a list of names.

 dep Dependent variables of determining equations for
equivalence group, a list of function of names.

pdeRecord:-detEquiv:-arbvarsAction:-

 sys Determining equations for equivalence group from the
DEs system, a list of equations.

indep

Independent variables of determining equations for
equivalence group, a list of names.

 dep Dependent variables of determining equations for
equivalence group, a list of function of names.

Examples
with(SymmetryClassification):

Nonlinear Heat Equation with K u s 0
DEs := [diff(u(x,t),t) + diff(q(x,t),x) = 0, q(x,t)
= -K(u(x,t))*diff(u(x,t),x)];

DEs :=
v

vt
 u x, t C

v

vx
 q x, t = 0, q x, t =KK u x, t

v

vx
 u x, t

1. Create a pdeRecord of the Nonlinear Heat equation and its constraint by calling a
constructor -- newPDESys

NLHeat := newPDESys(DEs, constraint = [K(u) <>0]);

NLHeat :=
v

vt
 u x, t C

v

vx
 q x, t = 0, q x, t =KK u x, t

v

vx
 u x,

t &where K u s 0

NLHeat:-sys:-sys;
NLHeat:-sys:-indep;
NLHeat:-sys:-dep;
NLHeat:-sys:-arbvars;

v

vt
 u x, t C

v

vx
 q x, t = 0, q x, t =KK u x, t

v

vx
 u x, t

x, t
q x, t , u x, t

K u

NLHeat:-constraint:-sys;

137

A. The SymmetryClassification Package

O

O

(6.4)

(6.5)

NLHeat:-constraint:-indep;
NLHeat:-constraint:-dep;

K u s 0
u

K u

2. Assign detSymm field by calling detEqsForSymm.
detEqsForSymm(NLHeat):

 now we have assigned detSymm field. The information can be accessed by typing
NLHeat:-detSymm:-subFieldName.

NLHeat:-detSymm:-sys;

1
K u 2

v

vx
 _ξ4 x, t, q, u K u 2

Kq
v

vu
 _ξ4 x, t, q, u K u

C_ξ3 x, t, q, u K u Cq
v

vx
 _ξ1 x, t, q, u K u Kq2

v

vu
 _ξ1 x,

t, q, u K_ξ4 x, t, q, u q d
du

 K u = 0, 1
K u

v

vt
 _ξ4 x,

t, q, u K u Cq
v

vt
 _ξ1 x, t, q, u Kq

v

vu
 _ξ3 x, t, q, u

C
v

vx
 _ξ3 x, t, q, u K u = 0,

v

vq
 _ξ2 x, t, q, u = 0,

1
K u

v

vx
 _ξ2 x, t, q, u K u CK u

v

vq
 _ξ4 x, t, q, u Cq

K
v

vu
 _ξ2 x, t, q, u C

v

vq
 _ξ1 x, t, q, u = 0, K

v

vu
 _ξ4 x, t, q,

u K
v

vx
 _ξ1 x, t, q, u C

v

vt
 _ξ2 x, t, q, u C

v

vq
 _ξ3 x, t, q, u

= 0, 1
K u

K
v

vx
 _ξ2 x, t, q, u K u CK u

v

vq
 _ξ4 x, t, q,

u Cq
v

vq
 _ξ1 x, t, q, u C

v

vu
 _ξ2 x, t, q, u = 0, K

v

vq
 _ξ1 x,

138

A. The SymmetryClassification Package

O

O

O

(6.7)

(6.8)

(6.6)

O

O

(6.9)

(6.10)

O

t, q, u K
v

vu
 _ξ2 x, t, q, u = 0

NLHeat:-detSymm:-indep;
NLHeat:-detSymm:-dep;
NLHeat:-detSymm:-arbvars;

x, t, q, u
_ξ1 x, t, q, u , _ξ2 x, t, q, u , _ξ3 x, t, q, u , _ξ4 x, t, q, u

K u

3. Assign detEquiv field by calling detEqsForEquiv. This field consists of two sub-
fields: fullAction and arbvarsAction. The information can be accessed by
typing NLHeat:-detEquiv:-ActionName:-subFieldName.

detEqsForEquiv(NLHeat):
sub-field fullAction

NLHeat:-detEquiv:-fullAction:-sys;

d
dx

 _ξ1 x =
q d

du
 _ξ4 u KC_ξ5 K qK_ξ3 q K

q K
, d

dt
 _ξ2 t

=
2 q d

du
 _ξ4 u KC_ξ5 K qK2 _ξ3 q K

q K
, d

dq
 _ξ3 q

=
_ξ3 q

q
, d

dK
 _ξ5 K =

_ξ5 K
K

, d2

du2 _ξ4 u = 0

NLHeat:-detEquiv:-fullAction:-indep;
NLHeat:-detEquiv:-fullAction:-dep;

x, t, q, u, K
_ξ1 x , _ξ2 t , _ξ3 q , _ξ4 u , _ξ5 K

sub-field arbvarsAction
NLHeat:-detEquiv:-arbvarsAction:-sys;

d
dK

 _ξ5 K =
_ξ5 K

K
, d2

du2 _ξ4 u = 0

NLHeat:-detEquiv:-arbvarsAction:-indep;
NLHeat:-detEquiv:-arbvarsAction:-dep;

u, K
_ξ4 u , _ξ5 K

See Also

139

A. The SymmetryClassification Package

newPDESys, detEqsForSymm, detEqsForEquiv, SymmetricRifsimp, AddInvtInfo,
SymmetryClassification

140

A. The SymmetryClassification Package

•

•

•

•

•

•

•

•

•

SymmetryClassification[newPDESys] - constructor method for
pdeRecord data structure

Calling Sequence
 newPDESys(system)
 newPDESys(system, options)

Parameters
 system - list or set of differential equations
 options - (optional) list of option(s) of the form option=value where option is one
of indeps, deps, arbitrary, or constraint; specify options for the newPDESys command

Description
newPDESys is a constructor function for a pdeRecord data structure, for use in the
SymmetryClassification package. The purpose of this command is to create a
container for storing various information on differential equations (DEs) system
given by user.

The input parameter system should be a DEs system with arbitrary elements
(constants or functions). Such elements may represent physical properties like wave
speeds, diffusivities, etc.
newPDESys creates and returns a pdeRecord module data structure for storing DEs
system. The pdeRecord can then be used by other commands in the
SymmetryClassification package. With all DEs system information which are
specified by a user will be stored in the pdeRecord, then returns the pdeRecord.

Additional information to the DEs system can be specified in options. Options are
listed below:
indep=[var1, ...]
Specify list of independent variables of the DEs system.
dep=[varFunc1, ...]
Specify list of dependent variables of the DEs system. Type of varFunc1, ... has to
be function of name.
arbitrary=[var1, ...]
Specify list of arbitrary elements of the DEs system. Type of var1, ... can be either
name or function of name.
constraint=[eq1, ...]
Specify list of constraints on the arbitrary elements of the DEs system. Type of eq1,
... can be either equation or inequation.

If options indep=, dep=, or arbitrary= are not specified, then newPDESys
will automatically extract this information from the input DEs system. These

141

A. The SymmetryClassification Package

O

O

(2.1)
O

(2.3)

O

(2.2)

O

(2.4)

O

(2.5)

•

options only need to be specified only when there is a risk of ambiguity. For

example, for the DE y x d2

dx2 y x =K1
2

 f x it is necessary to specify dep=

[y(x)], arbitrary=[f(x)], otherwise f x may be interpreted as an
additional dependent variable (see Example 3 below).
newPDESys checks the validity of the information specified by the user. It will
override any invalid user specification.

Examples
Set up

with(SymmetryClassification);
AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,

detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation

Example 1
Nonlinear Diffusion Equation

DEs := [diff(u(x,t),t) + diff(q(x,t),x) = 0, q(x,t)
= -K(u(x,t))*diff(u(x,t),x)];

DEs :=
v

vt
 u x, t C

v

vx
 q x, t = 0, q x, t =KK u x, t

v

vx
 u x, t

Call newPDESys to create a pdeRecord for the DEs system. NLHeat is now a
pdeRecord. To access information of the pdeRecord, see pdeRecord for detail.

NLHeat := newPDESys(DEs);

NLHeat :=
v

vt
 u x, t C

v

vx
 q x, t = 0, q x, t =KK u x, t

v

vx
 u x,

t

Example 2
In this example, x and t are certainly independent variables. But a is interpreted as an
arbitrary constant.

DEs := [a*diff(u(x,t),t) + diff(u(x,t),x) = 0];

DEs := a
v

vt
 u x, t C

v

vx
 u x, t = 0

Call newPDESys to create a pdeRecord for the DEs system.
DERecord := newPDESys(DEs);

DERecord := a
v

vt
 u x, t C

v

vx
 u x, t = 0

DERecord:-sys:-indep;
DERecord:-sys:-arbvars;

x, t

142

A. The SymmetryClassification Package

(2.13)

O

(2.6)

(2.9)

O

(2.7)

(2.10)

O

O

O

(2.8)

(2.11)

(2.12)

O

O

a
If a is meant to be an independent variable, it must be specified...

DERecord := newPDESys(DEs, indeps=[a]);

DERecord := a
v

vt
 u x, t C

v

vx
 u x, t = 0

DERecord:-sys:-indep;
DERecord:-sys:-arbvars;

x, t, a

Example 3
DEs := [y(x)*diff(y(x),x,x)= -1/2* f(x)];

DEs := y x d2

dx2 y x =K
1
2

 f x

Call newPDESys to create a pdeRecord for the DEs system with f x unspecified.
The function f x is treated as dependent variable.

DERecord := newPDESys(DEs);

DERecord := y x d2

dx2 y x =K
1
2

 f x

DERecord:-sys:-dep;
DERecord:-sys:-arbvars;

f x , y x

Call newPDESys again but this time we specify the function f x to be an arbitrary
element.

DERecord := newPDESys(DEs, dep=[y(x)], arbitrary=[f
(x)]);

DERecord := y x d2

dx2 y x =K
1
2

 f x

DERecord:-sys:-dep;
DERecord:-sys:-arbvars;

y x
f x

See Also
newPDESys, detEqsForSymm, detEqsForEquiv, pdeRecord, SymmetryClassification

143

A. The SymmetryClassification Package

•

(2.1)
O

•

•

•

•

•

SymmetryClassification[detEqsForSymm] - find determining
equations for point symmetries of DEs

Calling Sequence
 detEqsForSymm(DERecord)
 detEqsForSymm(DERecord, infinitesimals=value)

Parameters
 DERecord - a pdeRecord module data structure
 infinitesimals=value - (optional) specify a list or set of infinitesimals

Description
Given a pdeRecord DERecord which contains information on a differential
equations (DEs) system, detEqsForSymm derives the determining equations for
point symmetries of the system.
detEqsForSymm requires a pdeRecord, which is created via the constructor
newPDESys.

The determining equations are stored in the pdeRecord by assigning the detSymm
field in the data structure. The returned value of detEqsForSymm is the updated
pdeRecord.

detEqsForSymm calls the existing procedure DeterminingPDE to derive the
determining equations.
detEqsForSymm allows user to specify the infinitesimals and their dependencies.
infinitesimals=value
This option is for the user to specify their own infinitesimals with corresponding
variables. The value can be a list or set of the form

 [[var1, infinitesimal1], [var2, infinitesimal2], ...
]

where var1, var2, ... are the names of variables, and infinitesimal1,
infinitesimal2, ... are the corresponding infinitesimals. The infinitesimals can
be names or functions. detEqsForSymm will choose sensible defaults if none are
specified.

Examples
with(SymmetryClassification);

AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,
detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation

144

A. The SymmetryClassification Package

O

(2.4)

(2.3)

O

O

O

O

O

O

(2.2)

Typesetting setup
with(Typesetting): Settings(userep=true):
interface(typesetting=extended):

Suppress({u(x,t),q(x,t), K(u)});

Create a pdeRecord for Nonlinear Diffusion Equation.
DEs := [diff(u(x,t),t) + diff(q(x,t),x) = 0, q(x,t)
= -K(u(x,t))*diff(u(x,t),x)];

DEs d utCqx = 0, q =KK u ux

NLHeat := newPDESys(DEs, constraint = [K(u)<>0]);
NLHeat d utCqx = 0, q =KK u ux &where K s 0

1. Find determining equations -- no infinitesimals specified
detEqsForSymm(NLHeat):

Note that detEqsForSymm chooses default names for infinitesimals.
print(NLHeat:-detSymm);

1
K

K
v

vx
_ξ2 x, t, q, u C

v

vq
_ξ4 x, t, q, u KKq

v

vu
_ξ2 x, t, q, u

K
v

vq
_ξ1 x, t, q, u = 0, 1

K
K

v

vt
_ξ4 x, t, q, u KKq

v

vt

_ξ1 x, t, q, u Cq
v

vu
_ξ3 x, t, q, u K

v

vx
_ξ3 x, t, q, u K = 0,

1
K2

v

vx
_ξ4 x, t, q, u K2

Kq
v

vu
_ξ4 x, t, q, u KC_ξ3 x, t, q, u K

Cq
v

vx
_ξ1 x, t, q, u KKq2

v

vu
_ξ1 x, t, q, u K_ξ4 x, t, q, u q dK

du

= 0, 1
K

K
v

vx
_ξ2 x, t, q, u K

v

vq
_ξ4 x, t, q, u KKq

v

vu

_ξ2 x, t, q, u C
v

vq
_ξ1 x, t, q, u = 0,

v

vq
_ξ2 x, t, q, u = 0,

v

vu

_ξ2 x, t, q, u C
v

vq
_ξ1 x, t, q, u = 0,

v

vu
_ξ4 x, t, q, u C

v

vx
_ξ1 x, t,

q, u K
v

vt
_ξ2 x, t, q, u K

v

vq
_ξ3 x, t, q, u = 0 &where K s 0

145

A. The SymmetryClassification Package

O

O

(2.5)

O
2. Find determining equations -- infinitesimal names specified

Suppress({xi(x,t,u),tau(x,t,u),eta(x,t,u), chi(x,t,
q,u)});

detEqsForSymm(NLHeat, infinitesimals=[[x, xi(x,t,u)]
, [t, tau(x,t,u)], [u, eta(x,t,u)], [q, chi]]):

print(NLHeat:-detSymm);

Kηx K
2
Cq ηu KKq ξx KCq2 ξuCη q dK

du
Kχ K

K2 = 0, KτtCηuKχqCξx

= 0,
Kτx KCq τu

K
= 0,

τx KKq τu

K
= 0,

Kηt KKχx KKq ξtCq χu

K

= 0, τu = 0 &where K s 0

By default, printing the detSymm sub-module shows only the system of determining
equations. But other other information about the determining equations is stored and
can be accessed manually [see pdeRecord/detSymm for detail].

See Also
DeterminingPDE, newPDESys, pdeRecord, SymmetryClassification

146

A. The SymmetryClassification Package

•

•

•

•

•

•

SymmetryClassification[detEqsForEquiv] - find determining
equations for the equivalence group

Calling Sequence
 detEqsForEquiv(DERecord)
 detEqsForEquiv(DERecord, infinitesimals=value)

Parameters
 DERecord - a pdeRecord module data structure
 infinitesimals=value - (optional) specify a list or set of infinitesimals

Description
Given a pdeRecord DERecord which contains information on a differential
equations (DEs) system, detEqsForEquiv derives the determining equations for the
equivalence group of the system. The equivalence transformation is a point
transformation on the space of independent and dependent variables leaving
invariant the family of DEs.
detEqsForEquiv requires a pdeRecord, which is created via the constructor
newPDESys.

The determining equations are stored in the pdeRecord by assigning the detEquiv
field in the data structure. The return value of detEqsForEquiv is the updated
pdeRecord.
detEqsForEquiv derives the determining equations by first calling the procedure
DeterminingPDE for each of DEs system and constraint system, then combining
these two and completing it by calling rifsimp.
detEqsForEquiv allows user to specify the infinitesimal names and their
dependencies.
infinitesimals=value
This option is for user to specify its own infinitesimals with corresponding
variables. The value can be a list or set of the form

 [[var1, infinitesimal1], [var2, infinitesimal2], ...
]

where var1, var2, ... are the names of variables, and infinitesimal1,
infinitesimal2, ... are the corresponding infinitesimals. The infinitesimals can
be names or functions. detEqsForEquiv will choose sensible default if none are
specified.

Examples

147

A. The SymmetryClassification Package

(2.6)

O

(2.3)

O

O

O

(2.2)

(2.5)

O

O

(2.4)

O

O

O

O

O

(2.1)
with(SymmetryClassification);

AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,
detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation

Typesetting setup
with(Typesetting): Settings(userep=true, usedot=
false, useprime=false):
interface(typesetting=extended):

Suppress({u(x,t), q(x,t), K(u)});

Create a pdeRecord for Nonlinear Diffusion Equation
DEs := [diff(u(x,t),t) + diff(q(x,t),x) = 0, q(x,t)
= -K(u(x,t))*diff(u(x,t),x)];

DEs d utCqx = 0, q =KK u ux

NLHeat := newPDESys(DEs, constraint=[K(u)<>0]);
NLHeat d utCqx = 0, q =KK u ux &where K s 0

1. Find determining equations for the equivalence group
detEqsForEquiv(NLHeat):

Note that this is full-action...
print(NLHeat:-detEquiv);

d
dx

_ξ1 x =
q d

du
_ξ4 u KK_ξ3 q KC_ξ5 K q

q K
, d

dt
_ξ2 t

=
2 q d

du
_ξ4 u KK2 _ξ3 q KC_ξ5 K q

q K
, d

dq
_ξ3 q =

_ξ3 q
q

,

d
dK

_ξ5 K =
_ξ5 K

K
, d2

du2 _ξ4 u = 0

Default names for the infinitesimals were chosen by detEqsForEquiv since the user
didn't specify. By looking at the lists of variables it can be seen which infinitesimal
goes with which variable...

NLHeat:-detEquiv:-fullAction:-indep;
NLHeat:-detEquiv:-fullAction:-dep;

x, t, q, u, K
_ξ1 x , _ξ2 t , _ξ3 q , _ξ4 u , _ξ5 K

We also can view arbvars-action by
print(NLHeat:-detEquiv:-arbvarsAction);

148

A. The SymmetryClassification Package

O

(2.6)

O

O

(2.8)

O

O

(2.7)

d
dK

_ξ5 K =
_ξ5 K

K
, d2

du2 _ξ4 u = 0

2. Find determining equations for the equivalence group
 (with infinitesimal names specified)

Suppress({xi(x), tau(t), eta(u), chi(q), kappa(K)});

detEqsForEquiv(NLHeat, infinitesimals = [[x, xi],
[t, tau], [u, eta], [q, chi], [K, kappa]]):

print(NLHeat:-detEquiv);

dξ
dx

=
q

dη
du

 KCq κKχ K

q K
,

dτ
dt

=
2 q

dη
du

 KCq κK2 χ K

q K
,

dχ
dq

=
χ
q

,

dκ
dK

=
κ
K

,
d2η
du2 = 0

3. Find determining equations for the equivalence group
 (only some infinitesimal names and dependencies specified)
In this case, detEqsForEquiv gives the infinitesimal κ the default dependency
κ x, t, q, u, K . Also since no infinitesimal was specified for q, a default name is
chosen and default dependency on x, t, q, u is assumed.

detEqsForEquiv(NLHeat, infinitesimals = [[x, xi(x,t)
], [t, tau(x,t)], [u, eta(u)], [K, kappa]]):

print(NLHeat:-detEquiv);

dξ
dx

=
q

dη
du

 KCq κK_ξ1 q K

q K
,

dτ
dt

=
2 q

dη
du

 KCq κK2 _ξ1 q K

q K
,

d
dq

_ξ1 q =
_ξ1 q

q
,

dκ
dK

=
κ
K

,
d2η
du2 = 0

Although the infinitesimals start out with these dependencies allowed,
detEqsForEquiv has found constraints on the infinitesimals that allow it to drop
variables from the dependency lists.

See Also
DEtools[rifsimp], DeterminingPDE, newPDESys, pdeRecord, SymmetryClassification

149

A. The SymmetryClassification Package

•

•

•

•

•

SymmetryClassification[newProlongation] - constructor for
calculation with prolonged vector fields

Calling Sequence
 newProlongation(baseVF, dep, indep, detsys)

Parameters
 baseVF - list of ordered pairs; vector field on base space of independent and
dependent variables
 dep - list of names or functions; the dependent variables for the prolongation
 indep - list of names; the independent variables for the prolongation
 detsys - list of equations; determining differential equations satisfied by the base
vector field

Description
The newProlongation command returns a module that facilitates computation with
a prolonged vector field. It is similar in intent to the Eta_k command in the
PDETools package.

baseVF is a list of ordered pairs giving the names and functional dependencies of
the infinitesimals of the base vector field, of the form
 [[v1, inf1(v1,...)], ...]
where each variable v1, ... is the name of an independent or dependent variable, and
inf1(v1, ...) specifies the name and dependency of the corresponding infinitesimal.
See the examples below.
A dependent variable given as a name (e.g. a) is assumed to be a constant, that is a
'dependent variable' with null dependency.
The components of the vector field can be constrained to satisfy a system of
determining equations. In this case, the module returned by newProlongation takes
account of this determining system. For proper functioning, it is required that the
determining system be reduced and completed (e.g. by the DEtools[rifsimp]
command). If detsys is an empty list, then newProlongation finds the prolongation
of a point transformation.
newProlongation returns a module, whose exports give access to information about
the prolongation. The exports applyProlongedVF and checkInvariant
will be sufficient for most users; the other exports will mostly be of interest to
programmers.

applyProlongedVF
(expr)
applyProlongedVF(
[expr1, ...])

Function that applies the prolonged vector
field to expression expr or list of
expressions [expr1, ...].

150

A. The SymmetryClassification Package

O

•

(2.1)

(2.1.2)

•

O

O

(2.1.1)

checkInvariant(eq)
checkInvariant([eq1,
...])

function that checks whether equation eq
is invariant under the action of the
prolonged vector field. Return value is
boolean (true if invariant, false otherwise).

prolongToOrder()
prolongToOrder(k)

The first form returns the current order of
prolongation.
The second form ensures that prolongation
components up to order k have been
computed.

prolongVF(k) Function that returns the form of a
prolonged vector field to order k, in jet
notation, as a list of ordered pairs [[var1,
inf1], ...]. (Not reduced modulo detsys.)

jetSubsRules(k) Function that returns a list of substitution
rules giving the values of the
infinitesimals of a vector field prolonged
to order k. Substituting these into the
result of prolongVF(k) will give the
prolonged vector field reduced mod
detsys.

Most of the commands dealing with a prolongation use jet notation (see ToJet,
FromJet) for the jet variables. The corresponding infinitesimals are given a similar
notation.
newProlongation is used internally by various functions in the
SymmetryClassification package.

Examples
with(SymmetryClassification);

AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,
detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation

Example 1: Prolongation of scaling & translation group

Consider the vector fields ξ x, y
v

vx
 Cη x, y

v

vy
 in the plane whose

infinitesimals ξ, η are ξ = c1 xCc2, η=c3 (This generates a group of scalings and
translations x' = a*x+b, y'=e*y where a,e are nonzero). Take x as independent
variable and y as dependent.

indep := [x];
indep := x

dep := [y(x)];
dep := y x

151

A. The SymmetryClassification Package

O

O

O
(2.1.3)

O

(2.1.5)

O

O

(2.1.6)

(2.1.4)

(2.2.2)

O

(2.2.1)

(2.1.7)

O

baseVF := [[x,xi(x,y)], [y,eta(x,y)]];
baseVF := x, ξ x, y , y, η x, y

The 'determining system' here effectively is substitutions for the values of ξ, η...
detsys := [xi(x,y)=c1*x+c2,
 eta(x,y)=c3*y];

detsys := ξ x, y = c1 xCc2, η x, y = c3 y

pr := newProlongation(baseVF, dep, indep, detsys);

pr := _prolongation_of ξ
v

vx
 Cη

v

vy

Apply the prolonged vector field to an expression...
pr:-applyProlongedVF(diff(y(x),x,x));

y1, 1 c3K2 y1, 1 c1

Check whether a differential equation is invariant under the prolonged vector
fields...

pr:-checkInvariant(diff(y(x),x,x)=0);
true

Example 2: Prolongation from determining equations
Now redo Example 1, but instead of specifying the vector fields explicitly, instead
give the determining equations the infinitesimals ξ, η satisfy, namely

ξx, x = 0, ξy = 0, ηx = 0, ηy =
1 η
y

 (This system is in differentially complete form e.

g. as returned by rifsimp.)
detsys := [diff(xi(x,y),x,x) = 0,
 diff(xi(x,y),y) = 0,
 diff(eta(x,y),x) = 0,
 diff(eta(x,y),y)=1/y*eta(x,y)];

detsys := v2

vx2 ξ x, y = 0,
v

vy
 ξ x, y = 0,

v

vx
 η x, y = 0,

v

vy
 η x, y

=
η x, y

y

pr := newProlongation(baseVF, dep, indep, detsys);

pr := _prolongation_of ξ
v

vx
 Cη

v

vy

Apply the prolonged vector field to an expression...
pr:-applyProlongedVF(diff(y(x),x,x));

152

A. The SymmetryClassification Package

(2.2.7)

O

(2.2.6)

(2.2.4)

O

(2.2.3)

(2.2.5)
O

(2.2.8)

O

O

(2.2.9)

O

K

y1, 1 Kη x, y C2
v

vx
 ξ x, y y

y

Check whether a differential equation is invariant under the prolonged vector
fields...

pr:-checkInvariant(diff(y(x),x,x)=0);
true

For completeness, look at all the other exports of the prolongation module...
Check what order prolongation has been found so far...

pr:-prolongToOrder();
2

Ask explicitly for prolongation to order 3 to be computed...
pr:-prolongToOrder(3);

3

Look at the form of the prolonged vector field of order 2 (the variables are in jet
notation)...

pr:-prolongVF(2);
x, ξ , y, η , y1, η1 , y1, 1, η1, 1

The components of the prolonged vector field are given by formulas returned by
jetSubsRules ...

pr:-jetSubsRules(2);

ξ = ξ x, y , η = η x, y , η1 =K

y1 Kη x, y C
v

vx
 ξ x, y y

y
, η1, 1

=K

y1, 1 Kη x, y C2
v

vx
 ξ x, y y

y

So the reduced prolonged vector field is:
subs(%, %%);

x, ξ x, y , y, η x, y , y1, K
y1 Kη x, y C

v

vx
 ξ x, y y

y
,

y1, 1, K
y1, 1 Kη x, y C2

v

vx
 ξ x, y y

y

Example 3: Prolongation of conformal vector fields
A feature of newProlongation is that it works directly at the level of determining

153

A. The SymmetryClassification Package

O

O

(2.3.2)

(2.3.5)

O

O

(2.3.3)

O

(2.3.7)

(2.3.8)

(2.3.1)

(2.3.4)

O

O

(2.3.6)

O

equations. This is especially important when there is not a 'neat' way to write the
vector fields from a particular group. Consider conformal vector fields in the

plane ξ
v

vx
 Cη

v

vy
 C ψ

v

vu
 where ξ, η satisfy the Cauchy-Riemann

equations: ηy = ξx, ξy =Kηx and where ψ=0. We take x,y as indep and u as dep..

indep := [x,y];
indep := x, y

dep := [u(x,y)];
dep := u x, y

baseVF := [[x,xi(x,y)], [y,eta(x,y)], [u,psi(x,y,
u)]];

baseVF := x, ξ x, y , y, η x, y , u, ψ x, y, u

detsys := [diff(eta(x,y),x) = - diff(xi(x,y),y),
 diff(xi(x,y),x) = diff(eta(x,y),y),
 psi(x,y,u)=0];

detsys :=
v

vx
 η x, y =K

v

vy
 ξ x, y ,

v

vx
 ξ x, y =

v

vy
 η x, y , ψ x,

y, u = 0

pr := newProlongation(baseVF, dep, indep, detsys);

pr := _prolongation_of ξ
v

vx
 Cη

v

vy
 Cψ

v

vu

Apply the prolonged vector field to an expression...
pr:-applyProlongedVF(diff(u(x,y),x,x) + diff(u(x,
y),y,y));

K2 u1, 1
v

vy
 η x, y K2 u2, 2

v

vy
 η x, y

Check whether a differential equation is invariant under the prolonged vector
fields...

pr:-checkInvariant(diff(u(x,y),x,x) + diff(u(x,y),
y,y)=0);

true

Show expressions for the jet infinitesimals of a prolongation...
pr:-jetSubsRules(1);

ξ = ξ x, y , η = η x, y , ψ = 0, ψ1 =Ku1
v

vy
 η x, y Cu2

v

vy
 ξ x,

154

A. The SymmetryClassification Package

y , ψ2 =Ku1
v

vy
 ξ x, y Ku2

v

vy
 η x, y

See Also
Eta_k, SymmetryClassification

155

A. The SymmetryClassification Package

•
•

•

•

•

•

•

•

SymmetryClassification[AddInvtInfo] - label invariant
properties on splitting conditions of a symmetry classification

Calling Sequence
 AddInvtInfo(rifoutput, detEquivInArbvars, arbvars)

Parameters
 rifoutput - output from rifsimp
 detEquivInArbvars - the sub-field detEquiv:-arbvarsAction from a
pdeRecord module data structure
 arbvars - a list of arbitrary elements as function of names

Description
AddInvtInfo takes a symmetry classification tree and labels its case splits with
invariance information.

The input parameter rifoutput is a table which has been returned by rifsimp with
option casesplit [see rifismp/output for more detail]. The rif-output is assumed
to be the result of running rifsimp on the determining equations of a symmetry
classification problem.

The parameter detEquivInArbvars specifies the determining equations of a
group. The splitting conditions of the symmetry classification are tested to see if
they are invariant under this group.

The parameter arbvars is a list of the arbitrary elements occurring in the
symmetry classification. These are the dependent variables occurring in the case
splitting equations of the rif-output. They can be found in the subfield detSymm:-
arbvars of a pdeRecord.

Case splits of a symmetry classification should be invariant under the action of the
equivalence group. The usual call to AddInvtInfo will thus set the parameter
detEquivInArbvars to be the determining equations of the equivalence group,
as found in the sub-field detEquiv:-arbvarsAction of a pdeRecord.

AddInvtInfo returns an updated rif-output table.
AddInvtInfo uses the service procedure newProlongation to test invariance of each
pivot. It inserts two new entries: InvtCase and InvtPivots into the rif-output.
These new entries are similar to entries Case and Pivots but InvtCase and
InvtPivots have an additional boolean label, 'true' for invariant or 'false' for
non-invariant.
The updated rif-output can be displayed graphically by CasePlot.

156

A. The SymmetryClassification Package

O

O

(2.1)

O

O

O

•

(2.4)

O

O

O

(2.3)

(2.2)

O

O

(2.5)

O

AddInvtInfo does not itself do symmetry classification, it only labels the case splits
of an existing classification tree. The related procedure SymmetricRifsimp
performs symmetry classification by seeking invariant case splits.

Examples
We use 1+1 nonlinear heat equation as an example. We first need to produce a rif-
output and detEquiv field by create a pdeRecord, complete it, and call rifsimp.

with(SymmetryClassification);
AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,

detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation
Typesetting setup

with(Typesetting): Settings(userep=true):
interface(typesetting=extended):

Suppress({u(x,t), q(x,t), K(u)});

Create a pdeRecord for Nonlinear Heat Equation
DEs := [diff(u(x,t),t) + diff(q(x,t),x) = 0, q(x,t)
= -K(u(x,t))*diff(u(x,t),x)];

DEs d utCqx = 0, q =KK u ux

NLHeat:=newPDESys(DEs, constraint=[K(u)<>0]);
NLHeat d utCqx = 0, q =KK u ux &where K s 0

Assign fields detSymm and detEquiv by calling...
detEqsForSymm(NLHeat, infinitesimals = [[x,xi], [t,
tau], [u, eta], [q, phi]]):
detEqsForEquiv(NLHeat, infinitesimals = [[x,xi], [t,
tau], [u, eta], [q, phi], [K, kappa]]):

Now the pdeRecord is complete, we call rifsimp to classify symmetries
rifSys:= DEtools[rifsimp]([op(NLHeat:-detSymm:-sys),
op(NLHeat:-constraint:-sys)], [[eta, phi, xi, tau],
[K]], casesplit):

The rif-output is a table containing cases (which are represented as tables as well). In
Case 2, there are three entries: Case, Solved and Pivots.

indices(rifSys[2]);
Case , Solved , Pivots

For example the Case field of case 2 is:
rifSys[2][Case];

dK
du

s 0,
v

vq
φ x, t, q, u , 4 K d2K

du2 K7 dK
du

2
s 0,

v

vu
φ x, t, q, u ,

157

A. The SymmetryClassification Package

(2.6)

O

(2.7)

O

O

4 K d2K
du2 K3 dK

du

2
s 0,

v

vt
η x, t, q, u , K dK

du
 d3K

du3 K2 K d2K
du2

2

C
dK
du

2
 d2K

du2 = 0, η x, t, q, u

Calling AddInvtInfo for adding invariant properties on these splitting condition.
rifSys:=AddInvtInfo(rifSys, NLHeat:-detEquiv:-
arbvarsAction, NLHeat:-detSymm:-arbvars):

And now in Case 2, there two new entries: InvtCase and InvtPivots:
indices(rifSys[2]);

InvtCase , Case , Solved , InvtPivots , Pivots
These new entries are the same as before except that an extra item 'true' or 'false' has
been inserted as a label of whether or not it is invariant under the equivalence group:

rifSys[2][InvtCase];

dK
du

s 0,
v

vq
φ x, t, q, u , true , 4 K d2K

du2 K7 dK
du

2
s 0,

v

vu
φ x, t, q,

u , true , 4 K d2K
du2 K3 dK

du

2
s 0,

v

vt
η x, t, q, u , true , K dK

du
 d3K

du3

K2 K d2K
du2

2

C
dK
du

2
 d2K

du2 = 0, η x, t, q, u , true

The meaning is that for instance dK
du

s 0 is invariant under the equivalence group.

Here all the splitting conditions (first items) are tested as invariant is 'true'. This is the
best possible outcome.

See Also
SymmetryClassification, SymmetricRifsimp, DEtools[rifsimp], DEtools[rifsimp],
output, pdeRecord, newPDEsys, detEqsForSymm, detEqsForEquiv, CasePlot

158

A. The SymmetryClassification Package

•

•

•

•

•

SymmetryClassification[SymmetricRifsimp] - classify
symmetries using the rif algorithm

Calling Sequence
 SymmetricRifsimp(system, options)
 SymmetricRifsimp(system, vars, options)

Parameters
 system - list or set of polynomially nonlinear PDEs or ODEs (may contain
inequations)
 vars - (optional) list of the dependent variables
 options - (optional) sequence of options to control the behavior of rifsimp

Description
SymmetricRifsimp is a modified version of rifsimp. All functionalities in
rifsimp can be applied to SymmetricRifsimp, but SymmetricRifsimp provides
an additional option which is to select invariant splitting conditions if wanted. The
invariant splitting condition here means the splitting DEs are invariant under action
of a group.
SymmetricRifsimp is designed to be applied to symmetry classification. In this
case, the input system will be a system of determining equations for the point
symmetries of some DEs, and the group is the equivalence group of these DEs.
(Case splittings in a symmetry classification should be invariant under the action of
the equivalence group.)
SymmetricRifsimp returns a rif-output table, as described in rifsimp,output. If
invariant pivot selection is requested, the rif-output has additional fields inserted in
the table.
To have invariant option enabled, the procedure SymmetricRifsimp requires
another option, pivselect, in the following form

 pivselect = ['invariant', detEquivInArbvars,
arbvars]

where detEquivInArbvars is a sub-field detEquiv:-arbvarsAction
from a pdeRecord which contains information about the determining equations for
the equivalence group, and arbvars is a list of arbitrary elements.
SymmetricRifsimp works exactly same as rifsimp except that when the
invariant option is enabled, it tries to select invariant case splits during
classification. The preference of choice in invariant case splits are assumed to be
smalleq [see rifsimp,cases for detail]. That is, where rifsimp would choose the
smallest equation containing a case split, SymmetricRifsimp chooses the smallest
equation containing an invariant case split. If no invariant case splits are available,

159

A. The SymmetryClassification Package

O

O

O

O

O

O

(2.1)

O

•

O

(2.3)

•

(2.2)

O

O

SymmetricRifsimp will go back to choosing the smallest equation (i.e. same choice
as rifsimp).
With invariant option enable, the returned rif-output has two new entries
appended: InvtCase and InvtPivots. Both new entries are similar to entries
Case and Pivots but InvtCase and InvtPivots have 'true' as invariant or
'false' as non-invariant appended.
The rif-output can be displayed graphically by CasePlot.

Examples
We use 1+1 nonlinear heat equation as an example. We first need to produce a rif-
ouput and detEquiv field by creating a pdeRecord, complete it, and call
SymmetricRifsimp with invariant option enabled.

with(SymmetryClassification);
AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,

detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation
Typesetting setup

with(Typesetting):
Settings(userep=true):
interface(typesetting=extended):

Suppress({u(x,t), q(x,t), K(u)});

Create a pdeRecord for Nonlinear Heat Equation
DEs := [diff(u(x,t),t) + diff(q(x,t),x) = 0, q(x,t)
= -K(u(x,t))*diff(u(x,t),x)];

DEs d utCqx = 0, q =KK u ux

NLHeat:=newPDESys(DEs, constraint=[K(u)<>0]);
NLHeat d utCqx = 0, q =KK u ux &where K s 0

Suppress({xi(x), tau(t), eta(u), phi(q), kappa(K)});

Assign fields detSymm and detEquiv by calling..
detEqsForSymm(NLHeat, infinitesimals = [[x,xi], [t,
tau], [u, eta], [q, phi]]):
detEqsForEquiv(NLHeat, infinitesimals = [[x,xi], [t,
tau], [u, eta], [q, phi], [K, kappa]]):

Now the pdeRecord is complete, we call rifsimp to classify symmetries with
invariant option enabled

rifSys:=SymmetricRifsimp([op(NLHeat:-detSymm:-sys),
op(NLHeat:-constraint:-sys)], [[eta, phi, xi, tau],
[K]], casesplit, pivselect=['invariant', NLHeat:-

160

A. The SymmetryClassification Package

O

(2.5)

O

(2.4)

O

detEquiv:-arbvarsAction, NLHeat:-detSymm:-arbvars]):
The rif-output is a table contains cases (which represent as tables as well). The rif-
output has included two new entries: InvtCase and InvtPivots.

indices(rifSys[2]);
Solved , Pivots , InvtCase , Case , InvtPivots

rifSys[2][InvtCase];

dK
du

s 0,
v

vq
φ x, t, q, u , true , K7 dK

du

2
C4 d2K

du2 K s 0,
v

vu
φ x, t,

q, u , true , d2K
du2 KK

dK
du

2
s 0,

v

vt
η x, t, q, u , true ,

KK dK
du

 d3K
du3 C2 K d2K

du2

2

K
dK
du

2
 d2K

du2 = 0, η x, t, q, u , true

Call CasePlot to display rif-output graphically..
CasePlot(rifSys);

Case 1 Case 2

Case 3

Case 4

Case 5

≠

≠

≠

≠ =

=

=

=

See Also
SymmetryClassification, DEtools[rifsimp], newPDESys, pdeRecord, detEqsForSymm,
detEqsForEquiv, CasePlot

161

A. The SymmetryClassification Package

•

•

•

SymmetryClassification[CasePlot] - display rif-output graphically
as a case tree

Calling Sequence
 CasePlot(rifsys)
 CasePlot(rifsys, options)

Parameters
 rifsys - output from rifsimp or SymmetricRifsimp with casesplit active
 options - (optional) the form option=value where option is one of returnTree,
vars, format, or animate; specify options for the CasePlot command

Description
The CasePlot command plots a case tree representation of a system of PDEs as
returned by rifsimp or SymmetricRifsimp with option casesplit active.
CasePlot performs the same function as the DEtools,caseplot command, but has
some additional functionality specific to symmetry classification.
The format of the resulting tree can be controlled by options. The options argument
can contain one or more of the following equations.
returnTree = 'name'
As well as plotting the tree, a representation of the tree as a table is transcribed into
the variable with the given name. This option also causes information about the case
splits to be drawn at the nodes of the tree. Additional information such as pivot
expressions can be extracted from the table.
vars = [var1, ...]
Work out the dimension of the solution space of the rif-forms with respect to the
given list of variables [var1, ...], and add this information to the tree plot.
format = string
Format the tree plot as specified. Possible format strings are "standard",
"compact" and "auto". In "compact" format, the text on the tree is
abbreviated as compared with "standard" format. In "auto" format, CasePlot
switches between "standard" and "compact" automatically according to the
size and complexity of the tree. The default is "auto".

animate = true/false
If animate is true, return an animation instead of a plot. This is mostly for use within
the Maplet interface to rifsimp.
Additional options can be specified: these are passed through to the plot command,
which does the actual drawing.

162

A. The SymmetryClassification Package

O

Q

O

Q

Q

Q

O

(2.1)
O

Q

•

Q

Q

O

The following information is annotated on the tree:
Leaves of the tree are labelled as "Case 1", "Case 2" etc.
Any branches of the tree that were not followed by rifsimp are labelled as "
(skipped)" (for format="standard") or "--" (for format="compact").
Reasons why a branch might not be followed include:
 the branch was found to be inconsistent;
 the branch was found to have a solution space dimension lower than specified by
rifsimp option mindim=.
 the branch took too much execution time as specified by rifsimp options

If option returnTree= has been specified, then splitting nodes in the tree are
labelled with 'p1', 'p2' etc. These expressions are set to be nonzero on the left
subtree and zero on the right subtree. Expressions for 'p1', 'p2' etc. can be
recovered from the table returned via the returnTree value. (See Example 1
below.)
 Branchings are labelled with s or = (left subtrees are s, right subtrees are =).

If option vars= has been specified, then cases (leaves) are labelled with the
dimension of their solution space with respect to the given variables.
For a symmetry classification made using classifySymmetry (or the lower level
procedures SymmetricRifsimp and AddInvtInfo), CasePlot can indicate the cases
and branchings that are known to be invariant under the equivalence group --
distinguished by colour and font from those that are not invariant.

A title can be added to the case tree plot using the title= option (which is passed
to plot).

Examples
with(SymmetryClassification);

AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,
detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation

interface(typesetting=extended):
Typesetting:-Settings(userep=true):

Example 1: CasePlot of rifsimp output
Typesetting:-Suppress({K(u), xi(x,t,u), tau(x,t,u)
, eta(x,t,u), chi(x,t,u,q)});

Here is an overdetermined DEs system (also with an inequality constraint).
These are the determining equations for point symmetries of the nonlinear heat
equation written as a system.
The dependent variables ξ, τ, η, χ occur linearly, the variable K occurs nonlinearly.

DEs := [K(u)<>0, -diff(tau(x, t, u), x)*K(u)+q*

163

A. The SymmetryClassification Package

O

(2.1.1)

O

diff(tau(x, t, u), u) = 0, diff(tau(x, t, u), x)*K
(u)-q*diff(tau(x, t, u), u) = 0, diff(eta(x, t, u)
, t)*K(u)+diff(chi(x, t, u, q), x)*K(u)+q*diff(xi
(x, t, u), t)-q*diff(chi(x, t, u, q), u) = 0, -
diff(xi(x, t, u), x)-diff(eta(x, t, u), u)+diff
(chi(x, t, u, q), q)+diff(tau(x, t, u), t) = 0,
diff(eta(x, t, u), x)*K(u)^2-q*diff(eta(x, t, u),
u)*K(u)+q*diff(xi(x, t, u), x)*K(u)-q^2*diff(xi(x,
t, u), u)+chi(x, t, u, q)*K(u)-eta(x, t, u)*q*diff
(K(u), u) = 0, diff(tau(x, t, u), u) = 0];

DEs d K s 0, Kτx KCq τu = 0, τx KKq τu = 0, ηt KCχx KCq ξtKq χu

= 0, KξxKηuCχqCτt = 0, ηx K
2
Kq ηu KCq ξx KKq2 ξuCχ K

Kη q dK
du

= 0, τu = 0

Use rifsimp to casesplit...
rifDEs := DEtools[rifsimp](DEs, [[chi],[eta],
[tau,xi], [K]], indep=[q,u,t,x], casesplit):

... then plot the result.
With no options, the tree is not very informative...

CasePlot(rifDEs);

Case 1 Case 2

Case 3

Case 4

≠

≠

≠ =

=

=

Repeat the plot, but ask to see the dimension of the solution space with respect to
variables ξ, τ, η, χ .
Also ask for info about the tree to be stored in a name...

164

A. The SymmetryClassification Package

O

O
O

O

(2.1.2)

O CasePlot(rifDEs, returnTree='T', vars=[xi,tau,eta,
chi]);

Case 1 Case 2

Case 3

Case 4

3-d 4-d

5-d

inf-d

≠

≠

≠ =

=

=

p1

p2

p3

All the pivots and cases are coloured as though non-invariant. This is because
invariance information was not requested during tree construction, so none of the
case splits are known to be invariant.
The 'pivots' that rif split on are now contained in the tree...

for j to T["PivotCount"] do
 p||j = T["Pivots"][j][1]
end do;

p1 = dK
du

p2 =K7 dK
du

2
C4 K d2K

du2

p3 = dK
du

2
 d2K

du2 C
dK
du

 K d3K
du3 K2 K d2K

du2

2

Example 2: CasePlot of a symmetry classification
CasePlot is designed to interact well with other functions from the
SymmetryClassification package.
In particular it is able to indicate invariance information on the tree if this has been
calculated.

Typesetting:-Suppress({u(x,t), q(x,t), B(u), K(u)}
);

Nonlinear heat equation, written as a system...

165

A. The SymmetryClassification Package

O

O

(2.2.2)

O

O

(2.2.1)

RichardsEq := [diff(u(x,t),t) + diff(q(x,t),x) =
0, q(x,t) = -B(u(x,t))*diff(u(x,t),x)+K(u(x,t))];

RichardsEq d utCqx = 0, q =KB u uxCK u

...store in a pdeRecord module...
RichardsModule := newPDESys(RichardsEq,
constraint=[B(u)<>0]);

RichardsModuled utCqx = 0, q =KB u uxCK u &where B s 0

...and use classifySymmetry to set up the determining equations for symmetries
and split them into cases...

rifDetEqs := classifySymmetry(
 RichardsModule,
 infinitesimals=[[x,xi(x,t,u)], [t,tau(x,t,u)],
[u,eta(x,t,u)], [q,chi(x,t,u,q)], [B, beta], [K,
kappa]],
 pivselectOption='invariant'):

...finally showing a summary of the result graphically using CasePlot...
CasePlot(rifDetEqs, vars=[xi,tau,eta,chi],
returnTree='T', format="compact");

166

A. The SymmetryClassification Package

1. 2.

3. 4. 5.

6. 7.

8. 9.

10.

11.

12.

2 -d3 -d

2 -d3 -d 3 -d

4 -d4 -d

5 -d2 -d

3 -d

5 -d

∞ -d

__

__

≠

≠

≠ ≠

≠

≠

≠

≠

≠

≠

≠

≠

≠

=

=

=

=

=

=

=

=

=

=

=

=

=

p1

p2

p3 p4

p5

p6

p7

p8

p3

p3

p9

p10

p11

The upright black bold pivots are known to be invariant, while the red italic pivots
are not invariant.
The upright black bold Case information at the leaves indicates that all branchings
between root and leaf were invariant, so that these subcases have been split off
invariantly. The red italic Case information has at least one pivot between root and
leaf that has not tested as invariant, so that the case has not been split off
invariantly.
In fact this tree is a mess -- there are many non-invariant (red italic) branches.
This indicates that more control should be exerted over the classification e.g. by
controlling the ranking better.

See Also
classifySymmetry, SymmetricRifsimp, rifsimp, rifsimp/cases, caseplot,
SymmetryClassification

167

A. The SymmetryClassification Package

•

•

•
•

•

•

•

SymmetryClassification[classifySymmetry] - front-end
procedure for symmetry classification package

Calling Sequence
 classifySymmetry(DERecord, options)

Parameters
 DERecord - a pdeRecord module data structure
 options - (optional) sequence of options for classifySymmetry

Description
classifySymmetry is a front-end procedure for the SymmetryClassification package.
It classifies symmetries of a given DEs system (stored in a pdeRecord).
classifySymmetry requires a pdeRecord data structure which is created via the
constructor newPDESys. The procedure first complete the pdeRecord if needed, then
it calls SymmetricRifsimp with given ranking and pivselect options (if none
specified then it goes to default). It returns a rif-output [see rifsimp,output].
classifySymmetry may call the following procedures: detEqsForSymm (deriving
the determining equations for point symmetries), detEqsForEquiv (deriving the
determining equations for the equivalence group), and SymmetricRifsimp.
The rif-output can then be displayed graphically by a call to CasePlot.
List of options possibly needed for classification:
infinitesimals = [...]
This option is for user to specify their own infinitesimals with corresponding
variables. The value can be a list or set of the form

 [[var1, infinitesimal1], [var2, infinitesimal2], ...
]

where var1, var2, ... are the names of variables, and infinitesimal1,
infinitesimal2, ... are the corresponding infinitesimals. The infinitesimals can
be names or functions. classifySymmetry will choose sensible defaults if none are
specified. Note that infinitesimals = is used for both detEqsForSymm and
detEqsForEquiv, so the variables var1, var2,... can include independent &
dependent variables and arbitrary elements of the DEs system.
infinitesimalRanking = [...]
This option is for specifying the infinitesimal ranking, which is used for
SymmetricRifsimp. It should be a list of infinitesimal names, or a list of lists of
such names (as in the vars option of rifsimp [see rifsimp,options]). These
infinitesimals correspond to the independent and dependent variables of the DEs

168

A. The SymmetryClassification Package

O

O

O

•

(2.2)

O

O

O

(2.1)

•

O

O

(2.3)

(not arbitrary elements). For this option to make sense, infinitesimal names must
have been specified by infinitesimals= option.

arbvarsRanking = [...]
This option is for specifying the ranking for arbitrary elements, which is used for
SymmetricRifsimp. It should be a list of infinitesimal names, or a list of lists of such
names (as in the vars parameter of rifsimp [see rifsimp,options]).

pivselectOption = ...
This option is to control the pivot selection strategy used by SymmetricRifsimp.
Any of the values for the pivselect= option of rifsimp can be used [see rifsimp,
cases for details]. To request invariant pivot selection, use pivselectOption=
'invariant'. This will cause the symmetry classification to try to find case
splits that are invariant under the action of the equivalence group.

Examples
with(SymmetryClassification);

AddInvtInfo, CasePlot, ModuleLoad, SymmetricRifsimp, classifySymmetry,
detEqsForEquiv, detEqsForSymm, newPDESys, newProlongation

Typesetting setup
with(Typesetting): Settings(userep=true, useprime=
false, usedot=false):
interface(typesetting=extended):

Suppress({u(x,t), q(x,t), K(u)});

Example 1: Nonlinear heat equation, using default options
Create a pdeRecord for Nonlinear Diffusion Equation

DEs := [diff(u(x,t),t) + diff(q(x,t),x) = 0, q(x,t)
= -K(u(x,t))*diff(u(x,t),x)];

DEs d utCqx = 0, q =KK u ux

NLHeat := newPDESys(DEs, constraint=[K(u)<>0]);
NLHeat d utCqx = 0, q =KK u ux &where K s 0

Classify symmetries by calling classifySymmetry
Because invariance checking is not requested, the symmetry classification is as would
be done by DEtools[rifsimp], no invariance information is included in the rif-
output.

rifSys:= classifySymmetry(NLHeat):

CasePlot(rifSys);

169

A. The SymmetryClassification Package

(2.5)

O
(2.4)

O

O

O

Case 1 Case 2

Case 3

Case 4

Case 5

≠

≠

≠

≠ =

=

=

=

Example 2: Nonlinear heat equation, specifying options
NLHeat := newPDESys(DEs, constraint=[K(u)<>0]);

NLHeat d utCqx = 0, q =KK u ux &where K s 0

With pivselectOption='invariant', the symmetry classification is labelled
with invariance information.

rifSys:= classifySymmetry(NLHeat,
infinitesimals=[[x, xi], [t, tau], [u, eta], [q,
chi], [K,kappa]],
infinitesimalRanking=[eta, chi, xi, tau],
arbvarsRanking=[K],
pivselectOption='invariant'):

The pdeRecord now contains information on determining equations for point
symmetries...

Suppress({xi(x,t,q,u), tau(x,t,q,u), eta(x,t,q,u),
chi(x,t,q,u)});

print(NLHeat:-detSymm);

170

A. The SymmetryClassification Package

O

(2.5)

O

(2.6)

Kηq KKτx KCq τuKξq

K
= 0,

ηq KKτx KCq τuCξq

K
= 0, KηuKξx

CτtCχq = 0, τq = 0,
ηt KCq ξtKq χuCχx K

K
= 0, KτuKξq = 0,

Kηx K
2
Cq ηu KKχ KKq ξx KCq2 ξuCη q dK

du
K2 = 0 &where K

s 0
...and determining equations for equivalence group...

print(NLHeat:-detEquiv);

d
dx

ξ x =
q d

du
η u KCq κ K Kχ q K

q K
, d

dt
τ t

=
2 q d

du
η u KCq κ K K2 χ q K

q K
, d

dq
χ q =

χ q
q

, d
dK

κ K =
κ K

K
, d2

du2 η u = 0

A call to CasePlot shows the symmetry classification with invariance information
by colour coding.

CasePlot(rifSys, vars=[xi,tau,eta,chi], returnTree=
'T');

171

A. The SymmetryClassification Package

O

(2.7)

O

O

Case 1 Case 2

Case 3

Case 4

Case 5

3-d 4-d

4-d

5-d

inf-d

≠

≠

≠

≠ =

=

=

=

p1

p2

p3

p4

Inspect the pivots that the tree has split on...
for j to T["PivotCount"] do
 p||j=T["Pivots"][j];
end do;

p1 = dK
du

, true

p2 = K7 dK
du

2
C4 d2K

du2 K, true

p3 = d2K
du2 KK

dK
du

2
, true

p4 = KK dK
du

 d3K
du3 C2 K d2K

du2

2

K
dK
du

2
 d2K

du2 , true

See Also
DeterminingPDE, rifsimp, rifsimp[cases], detEqsForSymm, newPDESys,
SymmetryClassification

172

Appendix B

Published work arising from the

thesis

In the following pages is a copy of the paper

Lisle, I.G. and S.-L. T. Huang. 2009. ‘Algorithmic symmetry

classification with invariance.’ J. Engineering Mathematics DOI

10.1007/s10665-009-9327-6

presented at the conference Similarity: Generalization and applications, Uni-

versity of British Columbia, Canada, 11th–15th August 2008, and pub-

lished in a special issue of Journal of Engineering Mathematics.

173

Appendix B

This appendix has been removed due to copyright restrictions.

This appendix is available as:

Lisle, I.G. and S.-L. T. Huang. 2009. ‘Algorithmic symmetry classification with invariance.’ Journal
of Engineering Mathematics. Vol. 66, no. 1-3, pp. 201-216

Links to this chapter:

Print http://webpac.canberra.edu.au/record=b1522693~S4

Online subscribed
content (UC
community)

http://ezproxy.canberra.edu.au/login?url=http://www.springerlink.com/content/y567165
x2502g573/

Online general
public

http://www.springerlink.com/content/y567165x2502g573/

DOI 10.1007/s10665-009-9327-6

Abstract

Symmetry classification for a system of differential equations can be achieved algorithmically by applying a differential
reduction and completion algorithm to the infinitesimal determining equations of the system. The branches of the
classification should be invariant under the action of the equivalence group. We show that such invariance can be tested
algorithmically knowing only the determining equations of the equivalence group. The method relies on computing the
prolongation of a group operator reduced modulo these determining equations. The method is implemented in Maple: a
novel pivot selection strategy is able to guide the rifsimp command towards more favourable branchings.

http://webpac.canberra.edu.au/record=b1522693~S4
http://ezproxy.canberra.edu.au/login?url=http://www.springerlink.com/content/y567165x2502g573/
http://ezproxy.canberra.edu.au/login?url=http://www.springerlink.com/content/y567165x2502g573/
http://www.springerlink.com/content/y567165x2502g573/

	Introduction
	Symmetry Analysis of DEs
	Symmetry Analysis
	Lie Point Symmetry Analysis

	Symmetry Classification
	Equivalence Transformations

	Computer Algebra in Symmetry Analysis
	Symmetry Analysis Packages
	Differential Reduction & Completion Algorithms
	The Rif Algorithm

	Symmetry Classification Using Rif
	Symmetry Classification Using Rifsimp

	Results from Commutative Algebra

	Invariance Checking from Determining Equations
	Projection of Equivalence Group Action
	Issues with Symmetry Condition
	Invariance Using Determining Equations
	Invariance Checking in Symmetry Classification
	Label pivots from classification tree
	Guide rif during classification

	Implementation of Invariance Checking Method
	Required Implementations
	Symmetry Classification Package
	Storage Structure for DE System
	Pre-step methods
	Rifsimp with the ICM method
	Display Procedure
	Front-end procedure

	Examples
	1+1 Richards Equation
	Linear Hyperbolic Equation with Laplace Invariants

	Conclusion
	References
	The SymmetryClassification Package
	SymmetryClassification Overview
	pdeRecord
	newPDESys
	detEqsForSymm
	detEqsForEquiv
	newProlongation
	AddInvtInfo
	SymmetricRifsimp
	CasePlot
	classifySymmetry

	Published work arising from the thesis

