Abstract—This paper presents a novel method for solving face gender recognition problem. This method employs 2D Principal Component Analysis, one of the prominent methods for extracting feature vectors, and Support Vector Machine, the most powerful discriminative method for classification. Experiments for the proposed approach have been conducted on FERET data set and the results show that the proposed method could improve the classification rates.

I. INTRODUCTION

Human faces contain a lot of important biometrics information. One of them is about sexual category. Therefore, advances in facial expression recognition would be meaningful to the development of biometrics authentication systems.

Since Matthew Turk and Alex Pentland [1] used Principal Component Analysis (PCA) to deal the face recognition problem, it has become the major mathematical tool to extract feature vectors. Nevertheless, PCA could not capture even the simplest invariance unless this information is explicitly provided in the training data. To deal with the problem, some researchers proposed other approaches. For example, Wiskott et al. [2] suggested a technique known as elastic bunch graph matching. Bartlett et al. [3] proposed using ICA for face representation and reported that its results were better than PCA. Ming-Hsuan Yang [4] suggested Kernel PCA for face feature extraction and recognition and described that his method outperformed the classical method. However, the performance costs of ICA and Kernel PCA are higher than PCA.

To solve these problems, Jian Yang [5] proposed a new method called 2D Principal Component Analysis (2DPCA). In conventional PCA, face images have been represented in vectors by some technique like concatenation. As opposed to PCA, 2DPCA represent face images by using matrices or 2D images instead of vectors (Fig. 1). Clearly, using 2D images directly is quite simple and local information of the original images can be preserved sufficiently, which may bring more important features for facial expression classification.
linear solution will always exist in the high dimensional space, it is able to find effective solutions in practice. To deal with the face gender classification, many researchers [7-10] have applied SVM in their studies and stated that the experiment results are very positive. In our research, we have combined the powerful of each methods, 2DPCA and SVM, to solve the problem.

Figure 2. Curves of testing error and training error

The remaining sections of our paper will discuss the implementation of our face gender classification system, related theory, and experiments. Section 2 gives details of 2DPCA. Section 3 discusses how to use SVM for face gender classification. In Section 4, we will describe the implementation and experiments. Finally, we will conclude in Section 5.

II. TWO DIMENSION PRINCIPAL COMPONENT ANALYSIS

A. Face model construction

Our face model is built using a mathematical method called 2DPCA as mentioned above. As opposed to the conventional 2DPCA, we propose a novel 2DPCA with the weights to deal with some practical situations in which some face images in database are unclear or blur or the distribution of database has high bias. Denote training data as \(D = \left\{ \left(A^{(i)}, w_i \right), i = 1, \ldots, N \right\} \)

Algorithm 1: Construct the proposed face model

- Step 1: Compute the mean image

\[
\bar{A} = \frac{1}{N} \sum_{i=1}^{N} w_i A^{(i)}
\]

(1)

- Step 2: Compute matrix

\[
G = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i \left(A^{(i)} - \bar{A} \right)^T \left(A^{(j)} - \bar{A} \right)
\]

(2)

- Step 3: Compute eigenvectors and eigenvalues of \(G \) \(\Omega_1, \Omega_2, \ldots, \Omega_n \) and \(\lambda_1, \lambda_2, \ldots, \lambda_n \)

B. Feature extraction

We project input image \(A \) on each principal component of the proposed face model.

\[
\left\{ X_k = A \Omega_k, k = 1, \ldots, d \right\}
\]

(3)

Finally, we have the following feature matrix \(\left(X_1, X_2, \ldots, X_n \right) \).

III. SUPPORT VECTOR MACHINE

The goal of SVM classifiers is to find a hyperplane that separate the largest fraction of a labeled data set \(\left\{ (x^{(i)}, y^{(i)}); i = 1, \ldots, N \right\} \) where \(y^{(i)} \) is the associate label (-1 female or +1 male). The most important requirement, which the classifiers must have, is to maximize the distance or the margin between each class and the hyperplane (Fig 3.).

![An SVM classifier](image)

Figure 3. An SVM classifier

Clearly, most of real data is not linearly classified. To deal with difficulty, we could transform data into a high-dimensional feature space and assume that our data in this space can be linearly classified.

\[
n \rightarrow \quad m
\]

\[
x \mapsto \Phi
\]

(4)
In fact, determining the optimal hyperplane is a constrained optimization problem and solved using quadratic programming techniques. The discriminant hyperplane is defined by

$$ y(x) = \sum_{i=1}^{N} \alpha_i y^{(i)} K(x^{(i)}, x) + b $$

(5)

where $K(x', x'')$ is the kernel function.

Obviously, the optimal hyperplane or decision boundary mainly depends on vectors near to it. Therefore, to reduce unnecessary vectors we use the technique k-NN. It means that we will find the k nearest neighbors of a vector. If all of them belong to the class of the vector, we can drop it from the data set.

IV. IMPLEMENTATION AND EXPERIMENTS

We selected FERET face database to evaluate our approach. The FERET database was collected at George Mason University between August 1993 and July 1996. It contains 14,126 images stored in 1564 sets for 1199 individuals and 365 duplicate sets.

First of all, from FERET database we constructed a data set for building face models. The size of data set was 200 including 100 males and 100 females that were randomly chosen from FERET database. We used the algorithm 1 and conventional PCA to construct the models.

We designed face gender classification system including two main modules of extraction and classification. In the first module, face regions were identified and extracted from the background of the input image by using the well-known algorithm developed by Viola and Jones [11]. From the results of this step we cropped the areas of images containing faces. Feature matrices are extracted by using Formula (3). To construct the face gender classifier, we used Algorithm 2 and run it on the training data set which contained 200 individuals (100 males and 100 females) that were randomly selected from FERET database.

After training the SVM classifier, we conducted two experiments for gender classification.

Experiment 1: We applied the PCA face model to extract face features; and used two kernel functions, use quadratic solvers to solve the optimization problem

- Step 3: Compute b

$$ b = \frac{1}{N_{idx}} \sum_{i \in idx} \left(y^{(i)} - \sum_{j \neq i} \alpha_j y^{(j)} K(x^{(i)}, x^{(j)}) \right) $$

(8)

Algorithm 3: Classify

- Step 1: Compute

$$ y = \text{sgn} \left(\sum_{i=1}^{N} \alpha_i y^{(i)} K(x^{(i)}, x) + b \right) $$

(9)

- Step 2: Classify

$$ \begin{cases}
 \text{if } y = +1 \text{ then } x \text{ belong male} \\
 \text{if } y = -1 \text{ then } x \text{ belong female}
\end{cases} $$

(10)
using Algorithm 3 to classify input features as males or females.

Polynomial $K(\mathbf{x}, \mathbf{x'}) = (\mathbf{x}^T \mathbf{x'} + 1)^d$ with $d = 3$

Radial Basis Functions (RBF) $K(\mathbf{x}, \mathbf{x'}) = \exp\left(-\frac{||\mathbf{x} - \mathbf{x'}||^2}{2\sigma^2} \right)$

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Error rate (in %)</th>
<th>Male</th>
<th>Female</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBF SVM</td>
<td></td>
<td>2.04</td>
<td>4.77</td>
<td>3.39</td>
</tr>
<tr>
<td>Polynomial SVM</td>
<td></td>
<td>4.20</td>
<td>5.95</td>
<td>4.83</td>
</tr>
</tbody>
</table>

Experiment 2: We applied our proposed 2DPCA face model to extract face features; and also used the same kernel functions for SVM classifiers.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Error rate (in %)</th>
<th>Male</th>
<th>Female</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBF SVM</td>
<td></td>
<td>2.01</td>
<td>4.5</td>
<td>3.30</td>
</tr>
<tr>
<td>Polynomial SVM</td>
<td></td>
<td>4.15</td>
<td>5.41</td>
<td>4.51</td>
</tr>
</tbody>
</table>

V. CONCLUSION

In summary, we have proposed a new approach for face gender classification. The first contribution of this paper is to propose a novel face model based on conventional 2DPCA. The second contribution of this paper is to combine our proposed face model with SVM. We compared our method against traditional methods. The results from our method outperformed significantly.

A future direction of research is to extend the problem to facial expression classification.

REFERENCES